
Investigation of the radius of convergence
for the two dimensional Ising model

Alexander Adam

Bachelor thesis submitted in partial fulfilment
of the requirements to achieve the degree of

Bachelor of Science

Theoretical particle physics

Faculty of Mathematics and Natural Sciences

Bergische Universität Wuppertal

First supervisor:
Jun. Prof. Dr. J. Günther

Second supervisor:
Prof. Dr. S. Borsányi

Hand in Date:
April 17, 2023

Contents
1 Introduction 1

2 Mathematical Foundation 3

3 Statistical Mechanics 5
3.1 Canonical Ensemble . 5

3.1.1 Recursive differentiation . 6
3.2 The two-dimensional Ising model . 6

3.2.1 Phase transition and Fisher zeros 8

4 Numerical algorithms 10
4.1 Wolff algorithm . 10

4.1.1 Optimization . 11
4.1.2 Sweep problem . 14

4.2 Bootstrap . 15
4.3 Recursive differentiation algorithm . 16

5 Results 18
5.1 Verification of the simulation . 18

5.1.1 Verification for small lattice sizes 18
5.1.2 Verification for big lattice sizes 20

5.2 Derivative . 20
5.2.1 Derivative on large lattices . 21
5.2.2 Derivative on small lattices . 24

5.3 Radius of convergence . 25
5.3.1 Comparison of the root and ratio test 25
5.3.2 Determining the limit . 27

5.4 Determining the Fisher Zeros . 29
5.4.1 Comparison to Deger & Flindt 31

5.5 Determining the critical exponent ν and inverse temperature βc 32
5.5.1 Determination of ν & βc using the magnetization 33

5.6 Determination of the total error . 34

6 Conclusion and outlook 37

A Appendix 38
A.1 Derivatives on the lattice . 38

A.1.1 Symbolically calculated derivatives 38
A.2 Optimization . 39
A.3 Additional comparisons for the derivative of the internal energy at small

lattice sizes . 40
A.4 Radii of convergence . 42

A.4.1 Explanation for omitting L = 2 43

I

A.5 Determination of the Fisher Zeros . 44
A.6 Plots using the magnitude m as the observable 46

A.6.1 Plots of the radii of convergence 46
A.6.2 Plots of the Fisher zeros . 48

A.7 Models used for the total error . 50

Bibliography 51

II

List of Figures
4.1 internal energy simulated using WolffSweep! for L = 5 up to L = 150 . . 14
4.2 internal energy for a increasing summation limit inside WolffSweep! . . . 15

5.1 Comparison of the simulated internal energy and the analytical solution for
L = 2, 4, 6 . 19

5.2 Comparison of the simulated internal energy and Onsager solution 20
5.3 Comparison of the first three derivatives for L up to 150 at β = 0.3 21
5.4 Comparison of the fourth to sixth derivative for L up to 150 at β = 0.3 . . 21
5.5 Comparison of the first three derivatives for L up to 150 β = 0.4 22
5.6 Comparison of the fourth to sixth derivative for L up to 150 at β = 0.4 . . 22
5.7 Comparison of the first three derivatives for L up to 150 at β = 0.3, where

symbolic formulas are used . 23
5.8 Comparison of the fourth to sixth derivative for L up to 150 at β = 0.3,

where symbolic formulas are used . 23
5.9 Comparison of the derivatives for the lattice sizes of L = 2, 4, 6 at β = 0.3 . 24
5.10 Comparison of the derivatives for the lattice sizes of L = 2, 4, 6 at β = 0.4 . 24
5.11 Comparison of root and ratio test for L = 6 25
5.12 Comparison of root and ratio test for L = 11 26
5.13 Comparison of root and ratio test for L = 100 26
5.14 Simple fit for the radius of convergence at L = 6 & β = 0.3 27
5.15 Advanced fit for the radius of convergence at L = 6 & β = 0.3 28
5.16 Fits for the radii of convergence at L = 6 29
5.17 Drawn radii of convergence for L = 6 . 30
5.18 Drawn radii of convergence for L = 12 . 30
5.19 Comparison of the Fisher zeros with Deger & Flindt’s in the beta plane . . 31
5.20 Comparison of Re & Im of the Fisher Zeros with Deger & Flindt’s 32
5.21 Fits for ν based on the internal energy e 32
5.22 Fits for βc based on the internal energy e 33
5.23 Fits for ν and βc based on the magnetizationm 34
5.24 Normalised Histogram of ν . 35
5.25 CDF of the critical exponent ν to estimate the total error 36
5.26 Histogram and CDF of βc . 36

A.6 Fits regarding the radii of convergence for e 43
A.7 Series elements from the root test for a lattice size of L = 2 43
A.8 Fits regarding the Fisher zeros for e . 45
A.9 Fits regarding the radii of convergence for m 47
A.10 Fits regarding the Fisher zeros for m . 49

III

List of Tables
4.1 Speed measurements for the different optimised version of the Wolff

algorithm . 12
4.2 Speed measurements for the different types used to represent the spin . 13

Listings
4.1 Simple implementation of the Wolff cluster update, based on and closely

following the method described in the original paper [12]. 10
4.2 Exert of a .mem file showing the total amount of assigned memory by line 12
4.3 Definition of a sweep function, which carries out a multiple iteration of

the single Wolff update. 14
4.4 Structs used for save the the Julia function to recursively calculate the

derivative of with regards to a observable O consisting in the form of
OHn, where H is the external energy 16

4.5 Julia function to kickstart the calculation of the derivative a observable
using bootstraping. 17

4.6 Julia function to recursively calculate the derivative of with regards to
a observable O consisting in the form of OHn, where H is the external
energy . 17

A.1 Final form of the implantation of the Wolff algorithm 39
A.2 The functions used to calculate the bootstrap samples, generate the

resampling weights and blocking of observables. 39

IV

Acknowledgments
First and foremost I would like thank Prof. Dr. Jana N. Günther and Prof. Dr.
Szabolcs Borsányi for the support as well as the challenging and exciting thesis topic.
Furthermore, I would like to thank Nuha, Fabian and Ali for the professional discussions
and support. The conversations at the weekly group meetings have also been valuable.

V

1 Introduction
The theory of the strong interaction, quantum chromodynamics (QCD), is expected
to exhibit a second-order phase transition. However, due to the limitations of current
computational resources, it is not possible to directly simulate the region where the
critical point, i.e. the second-order phase transition, is expected to occur, making it
difficult to determine its precise location. To overcome this challenge, methods have
been developed to estimate the location of the critical point from simulations carried out
further from the critical point. One such method is to analyse the radius of convergence
of applicable observables and use their divergence at the critical point to determine its
position [1]. Of course simulations in quantum chromodynamics as well as the method
itself are complicated and computationally intensive.

We want to take a step back and apply the method to a model that is both easier to
simulate and easier to understand and also allows comparisons with known values along
the way. For this purpose, we use the Ising model, a mathematical model that can be
used to describe ferromagnetism. Specifically, we are interested in the two-dimensional
case. It was first written down in 1920 by W. Lenz, with Onsager formulating a solution
in 1944 for the two-dimensional case without an external magnetic field [2]. The rationale
for using the two-dimensional Ising model is that it is a simple yet powerful model for
understanding critical phase transitions. In addition it is easy to simulate, analytically
solvable and includes a second order phase transition. Therefore, the two-dimensional
Ising model is ideal to test the method for determining the critical point using the radius
of convergence, as it allows the simulated results to be compared with the corresponding
theoretical values. The aim of this thesis is therefore to estimate the critical inverse
temperature βc at which the critical point is located, using Monte Carlo simulations
from which the radius of convergence can be calculated. More precisely, we will use the
Fisher zeros, whose estimation will rely on the radii of convergence in conjunction with
there finite size scaling, to determine the critical exponent ν, a parameter dictating the
aformentiod scaling, and the critical inverse temperate βc of the two-dimensional Ising
model.

We will first describe the pure mathematics used to find two expressions for calcu-
lating the convergence radius based on a Taylor series. Subsequently, the physical basis
used to describe models such as the Ising model, i.e. statistical mechanics, are explained.
This chapter will also include the application of statistical mechanics to the Ising model
and the resulting expressions, such as the partition sum or the theoretical value of the
critical inverse temperature. In addition, an overview of phase transitions and Fisher
zeros is given, as well as an explanation of the method used in this thesis and how it
can be applied to determine the critical exponent ν and the critical inverse temperature
βc. This is followed by an explanation of the main numerical algorithms used in this
thesis, together with their implementation in the Julia programming language. The
implementation of the Wolff algorithm used to simulate the Ising model is explained
along with various optimisations. In addition, an error in the code written using the
Wolff algorithm, which causes deviations from theory for small lattice sizes, is reversed.
Furthermore, the method for estimating the statistical error is explained and the code
for calculating the derivative for Taylor series is presented. Lastly, the results of the

1

Introduction

simulations are interpreted using the knowledge gained from the chapters about the
statistical mechanics. It starts with a verification for small and large lattice sizes, using
the exact partition function and Onsager’s solution as values to compare. Following the
computed radii of convergence, Fisher zeros, critical exponent ν and critical inverse tem-
perature βc are presented and compared to known values. It ends with a determination
of the total error of ν and βc using a method from [3]. To summarise the objective, we
want to conclude whether or not the method described, using the radii of convergence,
can be used to determine the location of the critical point in the Ising model.

2

2 Mathematical Foundation
This chapter summarizes the elementary, yet important mathematical concepts in a
concise way . It is partly based on [4].

Let f be a function that is infinitely differentiable on the real interval (a, b) and
x0 be a point inside the aforementioned interval. One can then define the so called
Taylor polynomial as follows

TNf(x; x0) :=
N∑

n=0

f (n)(x0)
n! (x − x0)n. (2.1)

As N goes to infinity, the function f can be expressed, at the expansion point x0, as a
power series.

f(x; x0) =
∞∑

n=0
cn(x − x0)n cn = f (n)(x0)

n! . (2.2)

This power series is called the Taylor series of f at point x0. While it is certain that a
Taylor series converges to the exact value at the expansion point x0, whether the series
converges for a point different from the expansion point, depends on the function f .
To check if the Taylor series converges, the root test can be used. It states that a sum
of coefficients an converges if the value of C, as defined as lim supn→∞

n

√
|an|, is less

than 1 and diverges if it is greater than 1. If it is equal to 1, the test is inconclusive.
Applying this test to the Taylor series yields:

C = lim sup
n→∞

n

√
|an| = lim sup

n→∞
n

√
|cn(x − x0)n|

= lim sup
n→∞

(
n

√
|cn|

)
|x − x0|.

Using the constraint C < 1 for the convergence and the definition of the Taylor series,
the maximum value of |x − x0|, henceforth called the radius of convergence r, is given
by

r = 1

lim supn→∞

(
n

√∣∣∣f (n)(x0)
n!

∣∣∣) . (2.3)

This equation is the essence of the Cauchy–Hadamard theorem. Under the assumption
that each of the Taylor coefficients are non zero, the equation can be rewritten as follows

r = lim inf
n→∞

 n

√√√√∣∣∣∣∣ n!
f (n)(x0)

∣∣∣∣∣
. (2.4)

Another method to determine the radius of convergence is to use the ratio test. The
ratio test states that a sum of coefficients an converges if

lim
n→∞

∣∣∣∣∣ an

an+1

∣∣∣∣∣ < 1. (2.5)

3

Mathematical Foundation

Carrying out the ratio test for a Taylor series lead to:

1 > lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣cn+1(x − x0)(n+1)

cn(x − x0)n

∣∣∣∣∣
= lim

n→∞

∣∣∣∣cn+1

cn

∣∣∣∣|x − x0|.

As with the root test, the ratio test gives an upper bound on |x − x0| in the limit of
n → ∞. The radius of convergence r derived from the ratio test is

r = lim
n→∞

∣∣∣∣∣ cn

cn+1

∣∣∣∣∣. (2.6)

One can show that the radius of convergence is equal to the infimum of the distance
between the expansion point x0 and the singularities of the function f .

It is important to mention that even if one only looks at the real axis, singularities
inside the complex plane still affect the radius of convergence. As an example, consider

f(z) = 1
1 + z2 = 1

2

(1
z + i

+ 1
z − i

)
. (2.7)

It is continuous along the whole of the real axis, while at the same time having two
poles at i and −i in the complex plane. The nth derivative at z = 0 can be computed
to be [

∂nf

∂zn

]
z=0

= −in!
2

(
(−i)n−1 − in−1

)
(2.8)

from which the Taylor series at z = 0 follows:
∞∑

n=0

1
2((−i)n − in)(z − 0)n. (2.9)

Applying the root test to calculate the convergence radius leads to:

r = 1

lim supn→∞

(
n

√∣∣∣f (n)(x0)
n!

∣∣∣)
= 1

lim supn→∞

(
n

√
0.5((−i)n − in)

)
Using the fact that (i)n & (−i)n are bounded as well as the fact that the limit of n

√
C,

where C is a constant converges to 1, the lim sup can be determined to be 1. This leads
to a convergence radius of 1 which, as expected, is equal to the distance to the poles at
i & −i. It shows that functions continuous along the entire real axis can still have a
finite radius of convergence for a given point on the real axis.

4

3 Statistical Mechanics
Statistical mechanics studies systems whose many degrees of freedom make it impossible
to use the equations of motion to analyse and understand their dynamics. Instead,
statistical mechanics uses statistical ensembles to describe all possible states of a system.
These ensembles themselves only depend on a manageable number of observables, such
as temperature, internal energy, or particle count. Depending on the constraints placed
on a system, different statistical ensembles can be used to describe the macroscopic
properties of the given system. Due to the fact that this thesis is only concerned with
the Ising model in which just the energy can vary, only the canonical ensemble is
investigated in more detail. It should be noted, nevertheless, that in the thermodynamic
limit all ensembles lead to the same results.

3.1 Canonical Ensemble
In the canonical ensemble, as stated before, only the energy varies while all other
parameters stay constant, such as the volume, temperature or particle count. The
partition function of the canonical ensemble is defined as

Z =
∑

i

e−βEi , (3.1)

where the sum over i implies a summation over all possible states of the system. In
addition, Ei is the energy of the respective state i and β is defined as the inverse
temperature 1/(kT), where T is the absolute temperature and k is the Boltzmann
constant. Any expectation value of an observable O can be measured by averaging
its measurements over all possible states with the weight exp(−βEi), also called the
Boltzmann weight. The weighting ensures that unlikely states do not skew the expected
value.

⟨O⟩ =
∑

i Oie
−βEi∑

i e−βEi
= 1

Z

∑
i

Oie
−βEi (3.2)

For the energy E of the system, Equation 3.2 can be expressed in a more compact way
by using the fact that the observable itself appears in the weight. It follows that the
expected value of the energy is defined as follows in Equation 3.3.

⟨E⟩ = 1
Z

∑
i

Eie
−βEi = 1

Z
(−∂β)

∑
i

e−βEi = − ∂

∂β
log(Z(β)) (3.3)

The equation above enables one to calculate the exact expectation value of the energy
from the partition function, assuming the partition function can be written in a concise
way and the derivative w.r.t. the inverse temperature can be carried out. The internal
energy e is defined as E/V .

5

Statistical Mechanics
The two-dimensional Ising model

3.1.1 Recursive differentiation

To calculate the derivatives of observables such as the internal energy of systems where
the partition function is not known or cannot be easily differentiated, Equation 3.2 can
be used to construct a general formula for the derivative.

∂

∂β
⟨O⟩ = ∂

∂β

∑
i Oie

−βEi∑
i e−βEi

=

(∑
i Oi(−Ei)e−βEi

)(∑
i e−βEi

)
−

(∑
i Oie

−βEi

)(∑
i(−Ei)e−βEi

)
(∑

i e−βEi)(∑
i e−βEi)

=

(∑
i(−Ei)Oie

−βEi

)
(∑

i e−βEi) +

(∑
i Oie

−βEi

)
(∑

i e−βEi)

(∑
i Eie

−βEi

)
(∑

i e−βEi)
= − ⟨EO⟩ + ⟨O⟩ ⟨E⟩

As one can see, taking the derivative of Equation 3.2 leads to an expression which itself
contains only the expectation values of O,E and their product. The consequence is that
for the calculation of higher order derivatives one simply has to reapply the definition
of the derivative. The derivation of the formula for the second order derivative can be
seen in section A.1 along with the expressions for the first six derivatives of the internal
energy which were calculated symbolically.

3.2 The two-dimensional Ising model
The Ising model is a widely used mathematical model that provides valuable insights
into the behavior of physical systems. This simple yet effective model is based on a
lattice, with each point on the lattice representing a spin that can be oriented either up
or down. To be able to write down equations such as the Hamiltonian or the partition
function, we define Λ to be the set of all lattice sites. For each lattice site i ∈ Λ, σi

indicates whether the spin of the site is up (+1) or down (−1). A whole collection of
these spins is written as σ.

The Ising model is often used to simulate ferromagnetic materials, which are materials
that become magnetized in the presence of an external magnetic field. In two dimensions,
the Hamiltonian of the Ising model is determined by two key factors: the strength of
the interaction between neighboring spins (represented by the coefficient Jij) and the
coupling coefficient (represented by hj) that describe the interaction between the spin
and an external magnetic field. Based on this description, the Hamiltonian can then be
written as seen in Equation 3.4.

Hgeneral = −
∑

i,j∈Λ
Jijσiσj −

∑
j∈Λ

hjσj (3.4)

In the following, however, we will only consider nearest neighbour interactions with a
constant interaction strength and a vanishing external magnetic field. The general Hamil-
tonian from Equation 3.4 is simplified under the above constraints to Equation 3.5,where
<ij > indicates that sites i and j are nearest neighbours.

Hsimple = −J
∑

<ij>

σiσj (3.5)

6

Statistical Mechanics
The two-dimensional Ising model

Assuming periodic boundary conditions and a lattice of size L2, the partition function
can then be described as follows, where {σ} represents the set of all possible spin
configurations

Z(β, J) =
∑
{σ}

e−βH(σ) =
∑
{σ}

exp
βJ

∑
x,y∈L

(σx,y(σx,y+1 + σx+1,y))
. (3.6)

The simplifications are made because the Ising model can now be solved analytically in
two dimensions in the thermodynamic limit so that the simulated results can later be
compared. Analytical solutions for finite but arbitrary lattices have been formulated,
e.g. in [5], but they require free boundary conditions and are therefore not applicable.
It is important to note that the simplified two-dimensional system still has a phase
transition, unlike the one-dimensional case. The analytical solution was first written
down by Onsager[6] in terms of free energy. Equation 3.7 shows his solution where J1
and J2 have already been set to J , i.e. the isotropic case.

− βfons = ln 2 + 1
8π2

∫ 2π

0
dθ1

∫ 2π

0
dθ2 ln[cosh(2βJ)2

− sinh(2βJ)(cos(θ1) + cos(θ2))] (3.7)

Another equivalent formulation of Onsager’s using only a single integral is as follows

−βF = ln 2
2 + 1

2π

∫ π

0
dθ ln[cosh(2βJ1) cosh(2βJ2) + 1

k

√
1 + k2 − 2k cos(2θ)] (3.8)

with k being defined as sinh(2βJ)−2. Based on this equation of the free energy, Onsager
calculated the internal energy per site to be

e = −J coth(2βJ)
1 + 1

π
(2 tanh(2βJ)2 − 1)

∫ π/2

0

1√
(1 − 4k(1 + k)(−2) sin(θ)2

. (3.9)

In addition to the free and internal energy, Onsager was also able to obtain the critical
inverse temperature 1

βc =
ln

(
1 +

√
2

)
2J

. (3.10)

For J = 1 one obtains βc ≈ 0.4407. While Onsager’s solution is correct for the case of
a infinite volume, it is unable to predict the results for finite lattices due to artifacts
arising form the finite volume, so called finite volume errors. For larger lattices this
deviation is negligible, but for smaller grids in the order of 10 or 20 (depending on the
temperature, at which the simulation is performed) the deviation is significant and
does not allow a comparison of the simulation with the analytic solution. However, if
we look at lattice sizes in the low single digits, we can calculate the partition function
directly and thus compare the results. As an example, the calculation of the partition

1The critical (inverse) temperature can be determined without needing the full analytical solution
of the Ising model, eg see [7]

7

Statistical Mechanics
The two-dimensional Ising model

sum for a lattice of size 22 follows. While for lattice sizes of 22 and 42 the partition
function were calculated symbolically, the calculations for a lattice of size 62 are based
on [8]. The external source was used to obtain it, as it becomes unfeasible to calculate
the partition function via a simple brute force algorithm. [8] was also used to verify the
correctness of the calculated partition function for the sizes 22 and 42.

For a lattice size of 22 there are 16 (= 2(22)) possible spin configurations, since on
the 22 lattice each point can take on two values (spin up or spin down). Below are the
spin configurations listed with an energy that differs from zero:

H = −8J∣∣∣∣∣↓ ↓
↓ ↓

∣∣∣∣∣
H = 8J∣∣∣∣∣↓ ↑

↑ ↓

∣∣∣∣∣
H = 8J∣∣∣∣∣↑ ↓

↓ ↑

∣∣∣∣∣
H = −8J∣∣∣∣∣↑ ↑

↑ ↑

∣∣∣∣∣
All the remaining 12 configurations have an energy that equals zero. The resulting
partition function can be seen in Equation 3.11

ZL=2 = 2eβJ8 + 12 + 2e−βJ8 (3.11)

3.2.1 Phase transition and Fisher zeros

This subsection loosely describes what phase transitions are in statistical mechanics.
Definitions introduced here may not be complete and will only serve to give a rough
overview, while leaving out some details.

Generally speaking, systems which have multiple phases, can exhibit so called first
or second order phase transitions when changing from one phase to another. To quantify
the concept of phases, one introduces so called order parameters, which are observables
that help to distinguish between the phases, e.g. the derivative of the free energy with
respect to the external field. For the Ising model this would be the magnetization
of the system, defined as the sum of all spins. Using the Ehrenfest classification, a
first-order phase transition is defined as those lines in the phase diagram, where the first
derivative of the free energy is discontinuous. Those usually occur at coexistence lines
between two phases. Second-order phase transitions occur at a critical point, in which
the second derivative of the free energy is discontinuous. These usually occur at the
end of coexistence lines. At the second-order phase transitions, i.e. at the critical point,
the system displays interesting behaviour, such that the correlation length ξ diverges or
that some observables/physical quantities follow certain power laws, which only depend
on the type of the critical point. One example of such a power law is

ξ ∝
(

T − TC

TC

)ν

, (3.12)

where ξ describes the correlation length and ν is a so called critical exponent, whose
value is determined by the universality class of the system. When looking at the Ising
model one can identify the line along the axis of zero magnetization from a temperature
of zero up to the so called critical temperature TC , as the coexistence line that splits
the regions. In these regions most of the spins are either oriented up or down. The
second order phase transition is located at the point of critical temperature TC and zero

8

Statistical Mechanics
The two-dimensional Ising model

magnetization, i.e. at the end of the coexistence line. The discontinuity in the second
derivative of the free energy can be translated into a divergence of the heat capacity.
From this we can conclude that internal energy, whose derivative is heat capacity, has
a pole at the critical point. This in turn means that when calculating the radius of
convergence of the internal energy at a given temperature one should get the distance
to the critical point.

However, the critical point does not exist on lattices with finite sizes, i.e. in
performed simulations. This can be justified by the fact that for finite lattices the
partition function is a finite sum of exponential functions. Thus it is always positive
and the logarithm as well as its derivatives in the definition of the internal energy e
are always continuous. Therefore there can be no phase transitions with finite volume
and real T . However, if the T can be complex, the partition function may become
zero and the logarithm as well as the internal energy may get poles, so called Fisher
zeros. Due to the introduced singularities, the radius of convergence is finite, i.e. the
distances to the Fisher zeros. We can therefore measure the position of the Fisher zeros
in the complex plane (of the inverse temperature) by using different radii of convergence
from different betas and triangulating the position.Adding this to the fact that the
(leading) Fisher zeros converge towards the critical point, following the relationship
from Equation 3.13 where β denotes the location of a Fisher Zero [9], [10], we can again
calculate the critical point βc, as well as the critical exponent ν from the radius of
convergence.

|β − βc| ∝ L−1/ν (3.13)
Formulated more precisely: As we know from the underlying physics that the critical
point βc has no imaginary part, we can calculate the critical exponent ν from the
following equation

Im{β} ∝ L−1/ν . (3.14)
Then using the obtained ν and Equation 3.13 we can determine βc. It should be noted
that in addition to the critical inverse temperature βc, the critical exponent ν is also
known. Its value for the two-dimensional Ising model is 1.

9

4 Numerical algorithms
This chapter will explain the fundamental numerical algorithms used and show the
accompanying Julia code. For the Markov chain Monte Carlo (MCMC) simulation of
the Ising model, as described in section 3.2, both the Metropolis algorithm and the
Wolff algorithm are implemented. However only the Wolff algorithm is used in the final
simulations, while the Metropolis algorithm was only used to verify the implementation
of the Wolff algorithm. This chapter also shows the bootstrap algorithm used to
calculate the errors and the algorithm used to calculate the derivatives on the grid.

But before we look at the individual algorithms, we need to look at how we can
measure observables based on a simulation in the first place. Using Equation 3.2 in
addition to the assumption that a given configuration occurs with probability pi, leads
to Equation 4.1 [11]

⟨O⟩ =
∑

i Oi p−1
i e−βEi∑

i p−1
i e−βEi

(4.1)

However, if in the MCMC simulation we require that the probability of a configuration
is equal to the Boltzmann weight, the equation simplifies and we are left with a simple
sum as in Equation 4.2.

⟨O⟩ = 1
N

N∑
i

Oi (4.2)

4.1 Wolff algorithm
The Wolff algorithm is implanted as described by Ulli Wolff in his original paper from
1988 [12]. The correctness of the algorithm, i.e. the fulfillment of the four MCMC
conditions [11], [13] (positivity, normalization, ergodicity and (detailed-)balance) can
be seen in the original paper from Ulli Wolff. The following code snippet Listing 4.1
performs a elementary cluster update step and is the main routine, closely following
the four step process, a) to d), from Ulli Wolff.

Listing 4.1 Simple implementation of the Wolff cluster update, based on and closely following
the method described in the original paper [12].� �

1 function WolffStep!(currentConfig,beta)
2 #Initialization of variables
3 Nx,Ny = size(currentConfig)
4 marked = zeros(Bool,Nx,Ny)
5 queue = Array{CartesianIndex{2},1}(undef,0)
6 #Starting the cluster
7 start = CartesianIndex(rand(rng,1:Nx),rand(rng,1:Ny))
8 push!(queue,start)
9 currentConfig[start] = -currentConfig[start] #flip the starting point
10 marked[start] = true #mark the starting point
11
12 # loop until the queue is empty
13 while length(queue) != 0
14 current_index = pop!(queue)
15 for index in getNeighbors(current_index,Nx,Ny)
16 if marked[index] continue end
17 if currentConfig[current_index]==currentConfig[index] continue end
18 P = 1-exp(-2*beta)

10

Numerical algorithms
Wolff algorithm

19 if rand(rng)<P
20 currentConfig[index] = -currentConfig[index] #flip
21 marked[index] = true #mark
22 push!(queue,index) # add to queue
23 end
24 end
25 end
26 return sum(marked) #return clustersize
27 end� �

The following is an explanation of the functionality of the code with references to the
four steps from the paper.

• (a) The first step involves selecting a starting point, which is performed on line 7.

• (b) Once a starting point is selected, it is flipped and marked as visited. This is
done on lines 8 f.

• (c) The code then visits the nearest neighbors of the current index, attempting to
activate a bond between the current index and its neighbors with probability P .
During this process, the code visits the nearest neighbors of the current index,
as done on line 15. If the bond between the current index and its neighbor is
activated with probability P , the code flips the activated bond and marks it as
visited, which is performed on lines 20f.

• (d) Finally, the code repeats steps (b) through (c) for any remaining unmarked
neighbors until there are no more unmarked neighbors left to visit, which is done
on line 13 by checking if the queue is empty

4.1.1 Optimization

Though the code from Listing 4.1 produces the proper results, it is quite slow. This can
be traced back to two main reasons, the repeated memory allocation and the individual
drawing of random numbers. In order to see how various changes improve performance
a measure of the performance is needed. For this, the number of million spin flips per
second (MFPS) is used. While it may not be the best measure, as it is depend on the
lattice size and the inverse temperature of the simulation, it can be used to compare
different algorithms when holding the aforementioned parameters constant. Using this
metric, a baseline of (6.780 ± 0.019) MFPS can be established based on default code
from Listing 4.1.

Regarding memory allocation, there are three obvious improvements that can be
made. The marked, queue and neighbors array can be initialised at the beginning of
the simulation instead of the start of every cluster update. The marked array will then
only be needed to be reset at the beginning of a cluster update, i.e. filled with false.
The neighbors array can simply be overwritten with the new neighbors of the current
index. The queue list is replaced with a array of the maximum number of possible
entries (4 ·L2). Using this approach, a pointer is needed which keeps track of the current
location and is increased or decreased when a value is added or removed to the queue,
respectively. By using track-allocation=user as a argument when compiling and

11

Numerical algorithms
Wolff algorithm

executing the code a .mem file is created where the number at the beginning of each
line denotes the assigned bytes for the respective line during the entire runtime of the
program. The following Listing 4.2 shows the generated .mem file for an exert form the
code of Listing 4.1.

Listing 4.2 Exert of a .mem file showing the total amount of assigned memory by line� �
1 0 P=1-exp(-2*beta)
2 103417152 if rand(rng)<P
3 0 currentConfig[index]=-currentConfig[index] #flip� �

This shows that generating the random number for the accept-reject step is constantly
reassigned. One can avoid this by initialising an array of length 1 and refilling it with
a random number by using the rand!(rng,r) command which assigns the random
numbers in place. The individual effect as well as the sum of these improvements, as in
all implemented together, can be seen in Table 4.1.

Table 4.1 Speed measurements for the different optimised version of the Wolff algorithm.
All runs have been performed using the following parameters: L = 512 Nmeas =
10 000 β0 = 0.435 Independent runs = 10.
The Julia version used is 1.8.3 (2022-11-14).

changes w.r.t absolute performance relative improvement
baseline (6.780 ± 0.019) MFPS -

static queue array (7.084 ± 0.034) MFPS (1.05 ± 0.14)
static marked matrix (7.085 ± 0.020) MFPS (1.22 ± 0.11)
static neighbors array (8.280 ± 0.042) MFPS (1.41 ± 0.14)
static random array (7.839 ± 0.097) MFPS (1.25 ± 0.15)

all together (12.034 ± 0.024) MFPS (2.13 ± 0.20)

It shows that the changes to the overall memory allocation lead to an approximate
doubling of the speed of the algorithm. Another improvement, in addition to the
memory optimizations, can be achieved by changing the way random numbers are
drawn. In the baseline version, Listing 4.1 as well as after the memory optimizations,
random numbers are drawn individually when needed. By drawing a larger number
of random numbers at once and regenerating them only when all have been used, the
impact of the random number generator overhead can be reduced. Using this approach,
the speed of the program reaches (16.43 ± 0.12) MFPS, which is a further increase of
(32.70 ± 0.99) % and results in a overall increase over the baseline code by a factor of
(2.82 ± 0.26). The completely optimized code can be seen in Listing A.1

In addition to algorithmic optimisations, the nature of the underlying data, i.e. the
way in which the spins are stored in memory, can also have an impact on the overall
speed of the code. In Julia, there are four primitive types suitable for storing the spin(s):
Bool, Bitvector, Int and Float. The Bool type stores a single true or false value.
In theory, this would be the most suitable, since we only need to store whether the
spin is up or down. However, the Bool type still takes up an entire byte instead of
the one bit that is theoretically required. The type Bitvector solves this problem by

12

Numerical algorithms
Wolff algorithm

storing 8 Bools in one byte. This is the most compact way of storing the spins, but
the compiler may not be able to optimise the code using this type, as it could with the
Bool type. The Int is the most straight forward type, as it can directly store a 1 for
spin up and a −1 for spin down. This allows, for example, to write the calculations
used to compute the energy in a simpler and more convenient way. The type Int in
Julia is implemented via the usable types Int8,Int16,Int32 and Int64, which use
the respective number of bits as specified in their names. Finally, Float (available via
Float16, Float32 and Float64) could also be used in the same way as Int. While
it may seem strange to use Float, as floating-point arithmetic is significantly more
complex than integer or boolean arithmetic, the increased number of FPUs, as opposed
to ALUs, could compensate for this and result in an overall faster execution time. To
determine the fastest type for this application, we again run multiple simulations using
the optimised code from before for each type and determine the MFPS, the results can
be seen in Table 4.2.

Table 4.2 Speed measurements for the different types used to represent the spin. All runs have
been performed using the following parameters: L = 512 Nmeas = 10 000 β0 =
0.435 Independent runs = 10. The Julia version used is 1.8.3 (2022-11-14)

Type used absolute performance
Bitvector (14.270 ± 0.018) MFPS

Bool (16.411 ± 0.219) MFPS
Int8 (16.436 ± 0.047) MFPS
Int16 (16.359 ± 0.092) MFPS
Int32 (15.397 ± 0.026) MFPS
Int64 (15.111 ± 0.043) MFPS

Float16 (13.481 ± 0.035) MFPS
Float32 (15.667 ± 0.045) MFPS
Float64 (14.794 ± 0.077) MFPS

As can be seen, using Int8 as the type gives the fastest execution time, with Bool

also statistically matching the speed. Interestingly, Bitvector is the slowest type,
probably due to the aforementioned reduced compile efficiency. Using Float is also
definitely slower than using Int8, although interestingly Float32 can compete with
Int32. Int8 is used for all following simulation as it is the fastest and its results in
implementing certain functions whose readability is considerably greater than with
Bool.

13

Numerical algorithms
Wolff algorithm

4.1.2 Sweep problem

Although the accompanying code of the cluster update has been omitted as it is not
relevant for the algorithm, it is worth mentioning a small code piece that caused a
significant amount of trouble.

Listing 4.3 Definition of a sweep function, which carries out a multiple iteration of the single
Wolff update.� �

1 function WollfSweep!(currentConfig,Nx,Ny,beta)
2 s=0::Int
3 while s<Nx*Ny
4 s+=WolffStep!(currentConfig,Nx,Ny,beta)
5 # WolffStep!(...) returns the cluster size of the performed Wolff update
6 end
7 return s
8 end� �

The code in Listing 4.3 is supposed to alienated the problem of different autocorrelation
length for different lattice sizes when the total number of measurements stays the
same. Instead of calling WolffStep! one would call WolffSweep! which adjust the
time between measurements by repeating n cluster updates until L2 points have been
flipped. In addition to the keeping the autocorrelation length constant, the code was
also designed to help with comparing the autocorrelation with the metropolis simulation
using a checkerboard sweep. While it has achieved the goal of consistent autocorrelation,
with the continuum limit still matching Onsager’s solution, see Figure 4.1, it changes
the internal energy for small lattice sizes.

0 25 50 75 100 125 150
L

0.90

0.85

0.80

0.75

0.70

e

= 0.3

0 25 50 75 100 125 150
L

1.4

1.3

1.2

1.1

= 0.4

Figure 4.1 Plot of the internal energy e for increasing lattices sizes, from L = 5 up to
L = 150, compared to the expected internal energy e calculated form the Onsager
solution of the Ising model. The parameters of all the simulations are Nsep =
0 Ntherm = 40 Nmeas = 1 000 000.

To the see the effect on simulations using small lattices, the summation w.r.t the
cluster sizes is increased form 1 to L2 in increments of 1. Figure 4.2 shows the internal
energy at a inverse temperature of 0.3 and L = 2, 4, 6 with the aforementioned increase
in the summation limit compared to the internal energy calculated form the respective
partition function.

14

Numerical algorithms
Bootstrap

1 2 3 4
1.8

1.7

1.6

1.5

1.4

1.3

e

L=2

1 4 8 12 16
sweep limit upto L2

1.1

1.0

0.9

L=4

1 6 12 18 24 30 36

0.85

0.80

0.75

L=6

Figure 4.2 Plot of the internal energy e for a increasing summation limit inside the
WolffSweep! function up to L2 at a inverse temperature of 0.3 compared to the
expected internal energy e calculated form the respective partition function. The
parameters of all the simulations are Nsep = 0 Ntherm = 40 Nmeas = 1 000 000.

One can clearly see that for a limit of 1, which is equivalent leaving out the function
call to WolffSweep!, because in the Wolff algorithm the starting spin is always filliped,
the simulation agrees with the theoretically expected solution. However, as soon as
the summation limit is increased, the energy begins to differs significantly, with the
maximum deviation being 39.69 % for L = 2

The deviation is probably caused by the fact, that the introduction of the termi-
nation condition from the WolffSweep! function causes a bias towards measuring
configurations which flip big number spins i.e. updates with bigger cluster sizes. Bigger
cluster sizes in turn correlate with a bigger number of likewise spins, as only likewise
spins can be combined in a cluster, and therefore with a lower energy, as one can deduce
form Equation 4.3 where the Hamiltonian has been rewritten in terms of the (constant)
number of possible pairs of neighbors NN , number of aligned pairs of neighbors NA and
number of opposite pairs of neighbors NO.

H = −J
∑

<ij>

σiσj = −2JNN + 4JNO = −2JNN + 4J(NN − NA) (4.3)

= +2JNN − 4J(NA) (4.4)

4.2 Bootstrap
In order to calculate the statistical error on the observables, bootstrapping is used,
which is a resampling algorithm derived from the Jackknife resampling algorithm [14].
The fundamental idea is to simply repeat the experiment (simulation) a given amount
of times and then calculate the observable, one is interested in, on each experiment.
The spread of all the resulting observables can then be used to calculate the error on
the observable. However, instead of repeating the simulation a given number of times,
as this would be clearly be too computational expensive, new simulation are generated
based on the original simulation. This is done by sampling randomly from the original
simulation, henceforth called the central sample, until we have a new sample. While
this may seem counterintuitive at first, it turns out that this method can give accurate

15

Numerical algorithms
Recursive differentiation algorithm

estimates of the statistical error, especially in cases where the central sample is large
enough and the underlying probability distribution is not too complicated. The error
on the calculated error itself is then equal to the computed error divided by the square
root of the number of Bootstrap samples, i.e. the number of repeated simulations.
The number of Bootstrap samples one should use is a contested topic. Inside of this
thesis 1000 number of samples are used as it is on the upper bound of the what is
computational achievable with some of the samples that will be analysed and seems to
be a acceptable number of samples. It is important to note that when analysing data
in which each data point is not completely independent of the previous data point, i.e.
the data are correlated, as is the case in MCMC simulations, an extra step must be
introduced in order not to underestimate the error. This step is called blocking and is
done before the bootstrap algorithm. The idea is to block the data and use these blocks
as data points to resample. By doing this, it is ensured that the bootstrap samples will
contain the same correlations as the central sample. This of course introduces another
parameter, blocksize, which must be tuned alongside the number of bootstrap samples.
Although the block size can be tuned manually by looking at the bootstrap error and
increasing the block size until the error stops growing, a good approximation is 2τ int +1,
where τ int is defined as the integrated autocorrelation time. See [13] for an explanation
of the integrated autocorrelation time and its calculation. The code used to carrying
out the Bootstrap algorithm is displayed in Listing A.2

4.3 Recursive differentiation algorithm
In order to calculate the derivatives of observables O, such as e or m, using the
simulation based on the MCMC, the formula for recursive differentiation, as described
in subsection 3.1.1, needs to be implemented. For this, a general derivative function
for the nth derivative is implemented which recursively calls itself and caches already
computed expectation values and lower derivatives.

First, we need a way of tracking the expectation value and distinguishing between
cases such as ⟨H2⟩ and ⟨H⟩2. To do this, we use the struct OH to keep track of the
number of H and O in an expectation value, like this: ⟨Hn · Om⟩. Additionally, to keep
track of the nth derivatives of an expectation value, a struct D is used. The definition
of these structures can be found in Listing 4.4.

Listing 4.4 Structs used for save the the Julia function to recursively calculate the derivative
of with regards to a observable O consisting in the form of OHn, where H is the
external energy� �

1 struct OH # eq. to <O^n*H^m> with n stored in OH.O & m stored in OH:H
2 O::Int #Number of occurences of the observable in the EV
3 H::Int #Number of occurences of the energy in the EV
4 end
5 struct D # eq. to d^n/d beta^n <obs>
6 n::Int # n'th derivetive
7 obs::OH # of the obs
8 end� �

Using the structs, we can define the function calcDiff, which creates a dictionary

16

Numerical algorithms
Recursive differentiation algorithm

to cache the values of the derivatives, and define a function EV, which is used to
compute the expectation values needed during the calculation of the derivatives. The
function EV, as defined in Listing 4.5 from lines 5 to 13, will also cache the individual
expectation values (EV) and calculate them if they have not already been calculated
using the bootstrap method. It is important to note that although the resampling itself
is completely random, the same resampling order is used for all the different expected
values. The defined function then calls a function at the end which, using the defined
caches and the method for calculating the EV, can recursively calculate the desired
derivative.

Listing 4.5 Julia function to kickstart the calculation of the derivative a observable using
bootstraping.� �

1 function calcDiff(observable,H,n,weights,blocksize,calcEV=nothing,calcD=nothing)
2 # initializing calcEV & calcD if not provided
3 # left out for readability
4 ...
5 function EV(obs::OH)
6 if haskey(calcEV,obs)
7 return calcEV[obs]
8 else
9 obs_array=observable.ˆobs.O .* H.ˆobs.H
10 m=bootstrap_all(obs_array,weights,blocksize)
11 calcEV[obs]=m
12 return m
13 end
14 end
15 return d(OH(1,0),n,EV,calcD)
16 end� �

The called function d(...), whose full definition can be seen in Listing 4.6, either
returns the EV if n=0 or calculates the derivative using the formula

∂β ⟨O⟩ = − ⟨EO⟩ + ⟨O⟩ ⟨E⟩ .

It does this by starting with the expression for the first derivative. For higher derivatives,
the first term can be easily differentiated using the recursive formula. For the second
term, the general Leibniz rule is needed to split the product so that the recursive
formula can be applied. Thus, all derivatives of order n can be explicitly traced back to
order n − 1, on which d(...) can be recursively called until n = 0.

Listing 4.6 Julia function to recursively calculate the derivative of with regards to a observable
O consisting in the form of OHn, where H is the external energy� �

1 function d(obs::OH,n,EV,calcD)
2 if haskey(calcD,D(n,obs)) return calcD[D(n,obs)] end
3 if n==0
4 return_val = EV(obs)
5 else
6 m=n-1
7 s=sum(
8 binomial(m,k)*d(obs,m-k,EV,calcD).*d(OH(0,1),k,EV,calcD)
9 for k=0:m)
10 return_val=-1*d(inc(obs),n-1,EV,calcD).+s # inc(obs) : obs.H => obs.H+1
11 end ; calcD[D(n,obs)]=ret_val ; return ret_val
12 end� �

17

5 Results
This chapter summarises all the results obtained using the simulation code and the
analysis method derived in the previous chapters. In particular, it will show the
intermediate results obtained up to the final results for the critical exponent ν and
the critical inverse temperature βc. At the beginning we will also check the underlying
simulations and some calculated secondary observables. At the end an analysis of the
systematic error is carried out.

Unless stated otherwise, all calculations, including the final evaluation of the partition
function, are done using double-precision binary floating-point math. The statistical
errors of all simulated results are calculated using the bootstrap method, see section 4.2,
where the block size is set to 2τint +1 and the number of bootstrap samples is 1000. The
simulations themselves are performed using the Wolff algorithm, see section 4.1. For
each respective Plot Nsep, Ntherm, Nmeas are stated. Nsep denotes the number of cluster
updates between the measurement of the observables. Ntherm denotes the number of
thermalization updates to reach the thermal equilibrium. It should be stated that for
each set of simulation, the thermalization has been checked and sometimes the number
of thermalization updates has been increased vastly over the required amount. Finally
Nmeas denotes the total number of recorded samples for each observable (internal energy
and magnetization).

5.1 Verification of the simulation
Before looking at the resulting data and the associated analysis, we will examine the
simulated data and compare it to the known values. This is done for the very small
lattice sizes, L = 2, 4, 6, where the simulated results can be compared directly with the
derived expression based on the partition function. In addition, the simulated data are
compared to the Onsager solution of the Ising model. This is done by looking at the
data of simulations with increasing lattice sizes, up to L = 100, in order to extrapolate
the continuum limit.

5.1.1 Verification for small lattice sizes

To verify the simulation for small lattice sizes, the exact partition functions as calculated
in section 3.2 are used. The Onsager solution of the Ising model is not applicable due
to finite volume effects, see subsection 3.2.1.
For L = 2, 4, 6 the partition functions are evaluated at seven inverse temperatures up
to the critical inverse temperature. These values are compared with the simulations
carried out at the respective lattice sizes and temperatures. The following Figure 5.1
shows the deviation of the internal energy in percent.

Figure 5.1 shows that for small L the simulation agrees with the analytically expected
value. The maximum deviation is less than 0.021 %; the corresponding reduced chi-
squared statistics of 2.55, 0.85, 2.65 are also acceptable.

18

Results
Verification of the simulation

0.050

0.025

0.000

0.025

e
in

 %

L = 2 2
red = 2.19

0.050

0.025

0.000

0.025

e
in

 %

L = 4 2
red = 0.73

0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44
0.050

0.025

0.000

0.025

e
in

 %

L = 6 2
red = 2.27

Figure 5.1 Comparison of the internal energy between simulation and analytical result for
L = 2, 4, 6. The parameters of all the simulations are Nsep = 200 Ntherm =
4 000 Nmeas = 20 000 000.

19

Results
Derivative

5.1.2 Verification for big lattice sizes

To verify the correctness for larger lattice sizes, up to 1002, one has to take the Onsager
solution as an analytical result. However, this leads to a significant discrepancy for
smaller L, because the finite volume effects are still significant. Nevertheless, the
comparison can show whether the simulation approaches the continuum limit, i.e. if
the simulated results converge correctly.

0.015

0.010

0.005

0.000

0.005

0.010

e
in

 %

= 0.3

0.010

0.005

0.000

0.005

0.010

0.015 = 0.325

0.00

0.01

0.02

0.03

0.04
= 0.35

20 40 60 80 100
L

0.00

0.05

0.10

0.15

e
in

 %

= 0.375

20 40 60 80 100
L

0.0

0.2

0.4

0.6

0.8

1.0 = 0.4

20 40 60 80 100
L

0

1

2

3
= 0.425

Figure 5.2 Comparison of the internal energy between the simulation and the Onsager solution.
The parameters of all the simulations are Nsep = 2000 Ntherm = 40 Nmeas =
1 000 000.

Figure 5.2 shows that for each inverse temperature examined, the calculated internal
energy converges to the analytically expected one, with the rate of convergence decreasing
as the inverse temperature approaches the critical inverse temperature.

5.2 Derivative
Having verified the underlying simulation, we will now look at the derivatives of the
internal energy and compare them with the analytical result. The comparison will focus
on the inverse temperatures of 0.3 and 0.4 in order to have an analysis near and far from
the critical point where the rates of convergence are different. Derivatives are calculated
using the algorithm described in section 4.3. The parameters of all the simulations
performed in this section are Nsep = 2000, Ntherm = 4000, Nmeas = 1 000 000 unless
stated otherwise.

20

Results
Derivative

5 50 100 150
L

4.4

4.2

4.0

3.8

3.6

3.4

3.2

n e

n=1

5 50 100 150
L

30

20

10

0

10

20

30

40

n=2

5 50 100 150
L

350000

300000

250000

200000

150000

100000

50000

0

n=3

Figure 5.3 Comparison of the first three derivatives of the internal energy between the
simulation and the Onsager solution, which is indicated by the dotted black line,
at β = 0.3.

5 50 100 150
L

103

104

105

106

107

108

109

|
n e

|

n=4

5 50 100 150
L

104

105

106

107

108

109

1010

1011 n=5

5 50 100 150
L

107

109

1011

1013

1015

1017 n=6

Figure 5.4 Comparison of the fourth to sixth derivative of the internal energy between the
simulation and the Onsager solution with a logarithmic scale,at β = 0.3.

5.2.1 Derivative on large lattices

We will first look at the derivatives for larger lattices, up to 1502. Calculating the first
three derivatives for a range of lattices to see any convergence or divergence.

As one can see in Figure 5.3 for an inverse temperature of 0.3, the derivative
converges quickly with respect to L to the Onsager solution. However, the 2nd and 3rd

derivatives already start to diverge again for lattice sizes of around 100 and larger. By
looking at higher derivatives and using a logarithmic scale for the absolute value of the
derivative, the divergence can clearly be seen, see Figure 5.4.

If we look at the same graphs for a β value of 0.4, see Figure 5.5, we do not observe
any divergence for the first three derivatives. The third derivative data points, though,
already show a significant amount of noise.

21

Results
Derivative

5 50 100 150
L

6.8

6.6

6.4

6.2

6.0

5.8

5.6

5.4
n e

n=1

5 50 100 150
L

100

80

60

40

20

0

20

n=2

5 50 100 150
L

8000

6000

4000

2000

0

2000

4000

n=3

Figure 5.5 Comparison of the first three derivatives of the internal energy between the
simulation and the Onsager solution, at β = 0.4.

5 50 100 150
L

105

106

|
n e

|

n=4

5 50 100 150
L

107

108

109

n=5

5 50 100 150
L

108

1010

1012

1014 n=6

Figure 5.6 Comparison of the fourth to sixth derivative of the internal energy between the
simulation and the Onsager solution with a logarithmic scale,at β = 0.4.

When we look at the higher derivatives with a logarithmic scale, however, we see
that the derivative diverges again, as can be seen in Figure 5.6.

The divergence can be explained by looking at the definition of the various derivatives.
We know from the Onsager solution that the internal energy derivatives are intensive
observables because the values of the derivatives are finite. However, in the definition of
derivatives on a finite lattice (see subsection 3.1.1), extensive observables appear, such
as ⟨H⟩ or ⟨H2⟩, which tend to infinity as L increases. We therefore have a sign problem,
i.e. we take the difference of values that increase in size, while expecting the difference
to be finite, resulting in less accuracy as L increases. This explains the divergence for
bigger L as well as the accompanying increase in the errors of L. To confirm that this
is the case and not the result of an error in the code of the recursion algorithm used to
compute the derivatives, as described in section 4.3, we can compare the results with
those obtained using the symbolic equations. Figure 5.7 and Figure 5.8 show the results
of the derivatives using the formulas from subsection A.1.1.

22

Results
Derivative

5 50 100 150
L

4.4

4.2

4.0

3.8

3.6

3.4

3.2

n e

n=1

5 50 100 150
L

30

20

10

0

10

20

30

40

n=2

5 50 100 150
L

300000

200000

100000

0

n=3

Figure 5.7 Comparison of the first three derivatives of the internal energy between the
simulation and the Onsager solution, at β = 0.3. The derivatives are calculated
using the symbolically derived equations

5 50 100 150
L

103

104

105

106

107

108

109

|
n e

|

n=4

5 50 100 150
L

104

105

106

107

108

109

1010

1011 n=5

5 50 100 150
L

107

109

1011

1013

1015

1017 n=6

Figure 5.8 Comparison of the fourth to sixth derivative of the internal energy between the
simulation and the Onsager solution with a logarithmic scale, at β = 0.3. The
derivatives are calculated using the symbolically derived equations.

These figures show, especially when compared to Figure 5.3 & Figure 5.4, that
the divergence still occurs and verify the correctness of the underlying differentiation
algorithm.

23

Results
Derivative

5.2.2 Derivative on small lattices

To circumvent the sign problem, we calculate the derivative on smaller lattices, since we
have already seen that the simulation itself gives correct values for the internal energy,
and try to extrapolate to larger lattice sizes. In addition, for the small lattice sizes
for which it is feasible to compute the partition function, we can compare the results
with those obtained from the partition function. Figure 5.9 and Figure 5.10 are such a
comparisons for an inverse temperature of 0.3 and 0.4, respectively.

0 5 10 15
n

5

0

5

10

15

(
n e

) i
n

%

L=2 2
red = 2.49

0 5 10 15
n

1.0

0.5

0.0

0.5

L=4 2
red = 0.83

0 5 10 15
n

8

6

4

2

0

2

4

L=6 2
red = 2.01

Figure 5.9 Comparison of the derivatives for the lattice sizes of L = 2, 4, 6 to the analytic
results obtained from the respective partition function at β = 0.3.
The parameters of all the simulations are Nsep = 200 Ntherm = 4000 Nmeas =
20 000 000.

0 5 10 15
n

4

2

0

2

(
n e

) i
n

%

L=2 2
red = 3.89

0 5 10 15
n

1.5

1.0

0.5

0.0

0.5

1.0

1.5

L=4 2
red = 0.25

0 5 10 15
n

0

1

2

3

4

L=6 2
red = 7.23

Figure 5.10 Comparison of the derivatives for the lattice sizes of L = 2, 4, 6 to the analytic
results obtained from the respective partition function at β = 0.4.
The parameters of all the simulations are Nsep = 200 Ntherm = 4000 Nmeas =
20 000 000.

More comparisons for inverse temperatures of β = 0.325, 0.35, 0.375, 0.425, 0.435,
can be seen in section A.3. In general, the respective χ2

red indicated that the derivatives
measured on the simulations were in agreement with the theoretically expected ones.
It should nevertheless be emphasized that there are significant numbers of outliers,

24

Results
Radius of convergence

especially when including the plots in the appendix, which however always have a
correspondingly high error. A significant divergence, as in the case of the derivation
based on the large lattices, cannot be determined in any case. Perhaps an investigation
with a higher number of bootstrap samples than 1000, e.g. 10000, would be appropriate
to reduce the increased χ2.

5.3 Radius of convergence
Now that we can calculate derivatives of the internal energy e, albeit for small lattices,
the knowledge from chapter 2 can be used to calculate the radius of convergence of
e(β −β0) at a specific β0. We will first compare the two methods available for calculating
the radius of convergence, the square root test and the ratio test. We then determine
the convergence radius by estimating the limit of the respective infinite series. The
parameters of all following simulations are Nsep = 200 Ntherm = 4000 Nmeas = 20 000 000.

5.3.1 Comparison of the root and ratio test

Both methods of calculating the convergence radius require the determination of a
limit where the nnth elements of the sequence are related to the nth or (n)nth plus 1
derivative, respectively. The following Figure 5.11 is a direct compression of the first
50 elements in the respective series of the methods for a lattice size of L = 6 and an
inverse temperature of β = 0.3. In these and all subsequent Figures, rn is the value of
the nth elements of the respective series.

0 10 20 30 40 50
n

0.20

0.25

0.30

0.35

r n

root test

0 10 20 30 40 50
n

0.0

0.5

1.0

1.5

2.0

r n

ratio test

Figure 5.11 Comparison of the root and ratio test for L = 6 & β = 0.3 up to the first 50
elements.

As can be seen, the sequence elements of the root test converge quickly, in contrast
to the results of the ratio test, where the spread is so large that no conclusion can be
drawn about the convergence. Although many more plots can be created in regards to
the comparisons, they all lead to the same result, as stated above. One thing to note
is that there can sometimes be oscillations in the derivatives, see Figure 5.12 where
L = 12 & β = 0.425. While the root method dampens these, especially when correctly
applying the limit inferior, the ratio method behaves strangely as it takes only the

25

Results
Radius of convergence

ratios into account. A demonstration of both methods is shown in Figure 5.12 1 Taking
into account the damping of the oscillations as well as the generally better convergence,
the root test seems to be better suited to determine the radius of convergence.

0 10 20 30 40 50
n

0.0

0.1

0.2

0.3

r n

root test

0 10 20 30 40 50
n

0.00

0.05

0.10

0.15

r n

ratio test

Figure 5.12 Comparison of the root and ratio test for L = 11 & β = 0.4 up to the first 50
elements.

While we have already see the derivatives diverge for large lattice, the divergence
could in theory cancel out in the ratio test or impact the root test negligible. Applying
the root and ratio test a simulation performed at a lattice size of L = 100 and at a
critical inverse temperate of βc, however results in a radius of convergence, form the
root and ratio test near zero, see Figure 5.13. The expected value, based on the known
critical inverse temperature is however βc − 0.3 ≈ 0.14. A small deviation would be
expected, as the Fisher zeros could still be approaching the critical point, but such a
large deviation is not consistent with the theory.

10 20 30 40 50
n

0.00

0.05

0.10

0.15

r n

crit sim = 0.1406
root test

10 20 30 40 50
n

0.0

0.1

0.2

0.3

r n

crit sim = 0.1406
ratio test

Figure 5.13 Comparison of root and ratio test for L = 100 & β = 0.3 up to the first 50
elements. The black dotted line shows the approximate expected radius of
convergence based on the expansion to the critical point.

1Here one can see the difference between the limit and the limit inferior. While no limit might
exist for certain series, the limit inferior always exists.

26

Results
Radius of convergence

5.3.2 Determining the limit

In order to extract the actual convergence radius from the series generated by the
root test, it is necessary to extrapolate to infinity, as only a finite number of sequence
elements can be calculated. To do this, the series elements must be described by a
function from which the limit (-inferior) can be determined. Since the shape of the
convergence in the root test is not yet known, no function can be chosen for the fit
based on the underlying information or physical properties of the system. It is therefore
necessary to simply select a function and check that it fits the data points. One of
the simplest functions that can model a general decay, as seen in the root test above (
Figure 5.11 & Figure 5.12) with convergence to a constant value is f(n) = a + b/n.
While more complicated functions may be used, we will focus on the reciprocal function
with an added constant for now. Applying the fit function to the series elements from
Figure 5.11, where the first 10 elements of the series have been omitted to improve
the convergence of the fit, gives the result that can be seen in Figure 5.14. While the

10 20 30 40 50
n

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

r n

2
red = 1171.34

fit-limit : 0.16763±0.00029

Figure 5.14 Fit with the fit-function f(n) = a + b/n of the elements of the series (starting
at n = 10) created by the root test for the radius of convergence at L = 6 &
β = 0.3 .

fit is visually consistent with the data points, the χ2
red of 1171.34 suggests that the

fit function does not describe the data points well.However, this is to be expected as
the fit function should only be an approximation of the shape of the data points as
explained above. The χ2

red can be improved by including the inferior in the definition of
the square root test. Although we cannot reproduce the exact behavior of the limit
inferior without knowing all the infinite elements in the series, we can transform the
series into a strictly monotone decreasing one and use it to find the limit. This can
be achieved by discarding any element in the series greater than its preceding element.
Figure 5.15 shows such a monotonic series with an accompanying fit. Although one
can clearly see an improvement, which is consistent with the reduced χ2

red of 15.07,

27

Results
Radius of convergence

10 20 30 40 50
n

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

r n

all series elements
monotonic decreasing elements
 with 2

red = 15.44
fit-limit : 0.16566±0.00009

Figure 5.15 Fit with the fit-function f(n) = a + b/n of the strictly monotonic decreasing
elements of the series (starting at n = 10) created by the root test for the radius
of convergence at L = 6 & β = 0.3 .

the χ2
red is still too high to conclude that the fit function is accurately describing the

elements of the series. However, we will stick to the fitting function f(n) = a + b/n
in conjunction with the condition for strictly monotone decreasing series elements to
estimate the radius of convergence. Carrying out the same procedure for multiple
inverse temperatures, ranging from 0.3 to 0.44, results in Figure 5.16. As can be clearly
seen, the convergence radii are different for each beta. Looking closely at the colours,
we can see that the convergence radius starts to decrease monotonically as the inverse
temperature increases from 0.3 to 0.4, while it begins to increase again for the inverse
temperatures of 0.425, 0.435 and 0.44. Repeating the same procedure for lattice sizes
from L = 2 to L = 13 leads to similar plots, which are included in the Appendix, see
section A.4. It should also be noted that since the infimum method failed to produce a
monotonically decreasing sequence for L = 2, the data from the L = 2 simulation will
be omitted from further analysis. For the reason see, subsection A.4.1.

28

Results
Determining the Fisher Zeros

10 20 30 40 50
n

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

r_
n

2
red = 123.67

 = 0.3 ; 2
red = 15.07

 = 0.325 ; 2
red = 56.81

 = 0.35 ; 2
red = 16.35

 = 0.375 ; 2
red = 129.68

 = 0.4 ; 2
red = 115.95

 = 0.425 ; 2
red = 373.67

 = 0.435 ; 2
red = 62.74

 = 0.44 ; 2
red = 265.89

Figure 5.16 Multiple fits for the radius of convergence at L = 6 and inverse temperatures
ranging from 0.3 to 0.44. All fit functions used are of the form: f(n) = a + b/n
with the requirement that the series be monotonically decreasing, as explained
above. The χ2

red are computed for each individual fit as well as for the combination
of all fits and data points.

5.4 Determining the Fisher Zeros
Now that we have estimated the convergence radius for individual lattice sizes and
inverse temperatures, albeit with too large a value of χ2

red, we can use these to determine
the location of the Fisher zeros, as described in subsection 3.2.1. Figure 5.17 shows
the limits calculated on the basis of Figure 5.16, i.e. the different radii of convergence,
drawn as circles, representing the domain on which the internal energy converges. The
centre of the circle is therefore the point at which the simulation is carried out, while
the radius is equal to the radius of convergence. In addition, the point of intersection
of all the edges of the circles is shown, which is determined by the minimisation of the
least squares of the distances. Figure 5.17 shows a clear point at which all the circles
meet, i.e. a point by which all the radii of convergence are bound. The same process
converges successfully for all simulated lattice sizes except for L = 12 and L = 13, due
to the fact that the calculated radii of convergence lead to an arrangement of circles for
which no clear intersection can be determined. See Figure 5.18 for an example.

While the minimisation algorithm can of course determine the point with the
minimum distance to the circle edges, it is visually clear that the resulting point does
not represent a Fisher zero. This is probably due to the sign problem already affecting
the results. The Fisher zeros resulting from L = 12 and L = 13 are therefore ignored.

29

Results
Determining the Fisher Zeros

0.1 0.2 0.3 0.4 0.5 0.6
()

0.05

0.00

0.05

0.10

0.15

0.20

0.25
(

)
Intersection point

Figure 5.17 Overlay of several convergence circles based on the results from Figure 5.16 which
are based on a lattice size of L = 6 and inverse temperatures ranging from 0.3
up to 0.44, resulting in a Intersection point of β = 0.39684(10) + i 0.13436(2).

0.1 0.2 0.3 0.4 0.5 0.6
()

0.05

0.00

0.05

0.10

0.15

0.20

0.25

(
)

Intersection point

Figure 5.18 Overlay of several convergence circles based on the results from simulations
performed at lattice size of L = 12.

30

Results
Determining the Fisher Zeros

5.4.1 Comparison to Deger & Flindt

Before we use the scaling behaviour of the Fisher zeros to determine the critical point
in conjunction with the critical exponent, we compare the locations of the Fisher zeros
with known values. For this, we use the data from the already cited paper [10] by
Deger & Flindt, who kindly provided the calculated positions of the Fisher zeros for this
comparison. Figure 5.19 shows a side-by-side comparison of the Fisher zeros computed
so far, as well as those of Deger & Flindt, and the location of the critical point in
the thermodynamic limit. Grid sizes smaller than L = 5 have been omitted because
Deger & Flindt did not compute the location of the Fisher zeros for such small grids.
In addition, we can only check the match visually, since the errors calculated so far
are too small, as we can see from χ2

red, which are significantly larger than 1. While

0.32 0.34 0.36 0.38 0.40 0.42 0.44
()

0.00

0.05

0.10

0.15

0.20

0.25

(
)

This work
Deger & Flindt
critical point

Figure 5.19 Comparison of the Fisher zeros in the inverse temperature plane with the position
provided by Deger & Flindt [10].

Figure 5.19 roughly shows the approximate agreement, for a better overview Figure 5.20
plots the respective imaginary and real parts of the Fisher zeros. The analysis shows
that there is good agreement between the imaginary parts of the Fischer zeros and the
comparison data. In addition, the real parts are in agreement with the exception of a
significant deviation observed for a lattice size of 11. However, it should be noted that
this agreement only concerns the behaviour of the Fisher zeros. Taking into account
the statistical error calculated so far, there is no agreement.

31

Results
Determining the critical exponent ν and inverse temperature βc

5 6 7 8 9 10 11 12 13
L

0.39

0.40

0.41

0.42
(

)

This work
Deger & Flindt

5 6 7 8 9 10 11 12 13
L

0.06

0.08

0.10

0.12

0.14

0.16

(
)

This work
Deger & Flindt

Figure 5.20 Individual comparison of the real and imaginary parts of Fisher zeros with Deger
& Flindt’s Fisher zeros [10].

5.5 Determining the critical exponent ν and inverse
temperature βc

Using the determined imaginary and real parts of the Fisher zeros, in conjunction with
the scaling as explained in subsection 3.2.1, we can compute the critical exponent ν
and the inverse temperature βc. Instead of determining ν by fitting the exponential
scaling function Im{β} ∝ L−1/ν directly, we determine the slope s in the double-log
plot, ν is then given by −1/s. Figure 5.21 shows the described double log plot with the
calculated ν.

3 4 5 6 7 8 9 10 11
L

2.6

2.4

2.2

2.0

1.8

1.6

1.4

lo
g(

(
))

Fit : = 1.03190±0.00021
Fisher Zeros

Figure 5.21 Figure showing the fit to extract the critical exponent ν from the scaling behaviour
of the identified Fisher zeros, resulting in ν = 1.031 90 ± 0.000 21.

32

Results
Determining the critical exponent ν and inverse temperature βc

The slope s = −0.969 08 ± 0.000 19 results in a value for ν of 1.031 90 ± 0.000 21.
Using the estimated value of the critical exponent ν, we can now extract the critical
inverse temperature by using the scaling relation from subsection 3.2.1:

|β − βc| ∝ L−1/ν

and a linear fit. The extrapolated value of β for L−1/ν = 0 then corresponds to βc, see
Figure 5.22 for the fit.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
L(1/)

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

(
)

Fit : c = 0.45832±0.00035
Fisher Zeros

Figure 5.22 Figure showing the fit to extract the critical inverse temperature βc using the
critical exponent ν from Figure 5.21 and the scaling behaviour of the identified
Fisher zeros, resulting a y-intercept of 0.458 32 ± 0.000 35.

The resulting critical inverse temperature βc is equal to 0.458 32 ± 0.000 35. The
calculated ν differs from the theoretical value by 3.1%, while βc is off by 4.1%. Taking into
account the calculated statistical error, one can see that the values are not comparable
with the theoretical values. A possible reason could be that the systematic error
dominates the total error instead of the statistical error. The error analysis continues
in section 5.6 where the total error is determined.

5.5.1 Determination of ν & βc using the magnetization

In addition to the internal energy e, the magnetisation m, defined as the sum of the
spins divided by the volume, is another primary observable of the Ising model. So far
we have only used the internal energy e as a basis for the determination of the Fisher
zeros. However, since the magnetisation is also defined by a derivative of the logarithm
of the partition function2, its radius of convergence could also be used to derive the
Fisher zeros.

2Definition of the magnetization using the partition function: M(B, T) = 1/(L2)∂B ln Z((B, T)
where B is a external magnetic field. This definition holds true even if B is subsequently set to zero.

33

Results
Determination of the total error

Carrying out the previous analysis with the magnetization m as the observable
results in a critical exponent of ν = 1.060 63±0.020 07 and a critical inverse temperature
of βc = 0.444 55 ± 0.007 31. The associated fits for ν and βc can be seen in Figure 5.23,
while the plots containing the radii of convergence and Fisher zeros can be found in
section A.6.

3 4 5 6 7 8 9 10 11
L

2.6

2.4

2.2

2.0

1.8

1.6

1.4

lo
g(

(
))

Fit : = 1.06063±0.02007
Fisher Zeros

0.0 0.1 0.2 0.3
L(1/)

0.34

0.36

0.38

0.40

0.42

0.44

(
)

Fit : c = 0.44455±0.00731
Fisher Zeros

Figure 5.23 Determination of the critical exponent ν = 1.060 63 ± 0.020 07 and critical
inverse temperature of βc = 0.444 55 ± 0.007 31.

The increased statistical error is a result of the magnetisation itself having a larger
error than the internal energy. While ν is still more than three standard deviations
away from the analytical value, the calculated βc agrees with the theory within one
standard deviation.

5.6 Determination of the total error
As we have seen in the previous section 5.5, the statistical error cannot be used to
conclude that the calculated critical exponent ν and inverse temperature βc agree with
the analytical results, when using the internal energy e as a basis for the radii of
convergence. A possible explanation could be that the total error of these observations
is dominated by the systematic error, which is not included in the discussion of the
results. To verify this possibility, the determination of the total error will be the subject
of this section. This is done by calculating ν and βc based on a number of different fit
functions and examining the resulting distribution. More specifically, the convergence
radii on which ν and βc are based are determined using different fit functions, different
fit ranges and with or without the limit inferior correction. All resulting values for ν and
βc are then combined into a histogram. This histogram can then be transformed into a
Cumulative distribution function (CDF) from which the total error can be calculated.
For a thorough discussion of this method, see [3].

In addition to the reciprocal function previously used with an added constant, nine
other functions are introduced, all of which have a limit of zero, such that these functions
combined with a constant term can be used to describe the sequence generated by
the root test. The functions consist of six polynomials in 1/x, one exponential decay
model, two logarithmic functions and a simple constant function. A list of the functions

34

Results
Determination of the total error

used can be found in section A.7. In addition, the start of the fit range is varied from
five to forty, resulting in 36 different fit ranges. Finally, the fits are performed once
with and once without the monotonicity condition. All this results in 720 different
fit methods that can be used to determine ν and βc. In theory, each entry in the
histogram should be weighted according to the Akaike Information Criterion (AIC) to
avoid over-representation of certain fits that do not describe the data. However, due to
the increased χ2

red of all the fits, all the ACI weights except the one corresponding to
the lowest χ2

red are zero. We therefore have to resort to flat weighting, i.e. assigning
the same weight to each fit model. As a side effect, flat weighting tends to produce
the largest error. The total error is therefore unlikely to be underestimated. It should
be emphasised that these models can only estimate the systematic error introduced
by the fit of the radii of convergence. They do not help in the determination of the
systematic errors introduced by the calculation of the Fisher zeros or those systematic
errors introduced by the final fits for ν and βc. In addition, clearly non-converging
models are omitted from the histogram, e.g. ν < 0 or those with degrees of freedom
less than 1. This was necessary because, as discussed earlier, flat weighting cannot filter
these out because it does not take goodness of fit into account. Figure 5.24 displays
the normalised histogram, generated using the steps described above, for the critical
exponent ν with flat weighting.

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.200.00

0.02

0.04

0.06

0.08

0.10

re
la

tiv
e

fre
qu

en
cy

Figure 5.24 Figure showing the normalised histogram containing all the calculated critical
exponents ν based on 720 different fitting models.

The cumulative sum of the individual bins of the histogram gives the corresponding
CDF, which can be seen in Figure 5.25.

Based on the values of ν, where the CDF reaches plus and minus one standard
deviation (≈ 0.50 ± 0.34) from the median, we can give the critical exponent with the
total errors to be ν = 1.0399+0.0283

−0.0389. We can see that the difference in terms of standard
deviations is 1.02 compared to the theoretical value of 1.

35

Results
Determination of the total error

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

±1
 corresponding to ±1

Figure 5.25 Figure showing the CDF of Figure 5.24. The median is at ν = 1.0399 with the
one sigma deviation to the right at ν = 1.0682 and to the left at ν = 1.0010.

For the critical inverse temperature, both the normalised histogram and the CDF
are given in Figure 5.26.

0.42 0.44 0.46 0.48 0.50
c

0.00

0.01

0.02

0.03

0.04

re
la

tiv
e

fre
qu

en
cy

0.42 0.44 0.46 0.48 0.50
c

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Figure 5.26 Figure showing the normalised histogram as well as the CDF for the critical
inverse temperature. The median is at βc = 0.4609 with the one sigma deviation
to the right at βc = 0.4685 and to the left at βc = 0.4428.

The final estimated value of the critical inverse temperature with the total error is
βc = 0.4609+0.0076

−0.0180. The calculated βc differs from the theoretical value by about 1.12
standard deviations.

36

6 Conclusion and outlook
In this thesis, the method for determining the critical point using the radius of con-
vergence was implemented. Simulations of the two-dimensional Ising model were
successfully performed using the Wolff algorithm.

For large lattices, such as L = 100, the method fails to determine the critical point.
The failure of the method can be traced back to the values of the derivatives used to
determine the radii of convergence which begin to diverge as the lattice size increases.
The failure of the method is due to the values of the derivatives which begin to diverge
as the lattice size increases. Those derivatives cause the radii of convergence to tend
towards zero. The observed divergence is probably due to a sign problem introduced in
the numerical calculation of the derivatives.

However, for small lattices, L up to 11, we found that the derivatives could be
computed successfully, as the sign problem, while still present, can be overcome by
appropriately increasing the statistic. Following the aforementioned method, the radii
of convergence were calculated and the Fisher factors were estimated by finding the
intersection points of the resulting radii of convergence. Taking the imaginary parts of
the Fisher zeros in conjunction with the described finite volume scaling, the critical
exponent is calculated to be ν = 1.0399+0.0283

−0.0389. Using the computed value for the critical
exponent ν and the real parts of the Fisher zeros, the critical inverse temperature
is determined to be βc = 0.4609+0.0076

−0.0180. The errors are calculated by analysing the
distribution of the respective values of ν and βc generated by using different fitting
models. The values of critical exponent ν is compatible within 1.02 σ with the value
predicted by the theory, while the result for βc is compatible within 1.12 σ with the
Onsager solution for the critical point. In conclusion, the method is suitable for the
determination of the critical point in two dimensional Ising model, although the error
is relatively large.

As an outlook, the estimation of the total error should also include those generated
by finding the intersection of the radii of convergence and the extrapolation of ν as well
as β. One could then try to reduce the systematic error, as it is clearly the dominant
error in the total error. This could be achieved by using a more appropriate range of
fitting models, preferably choosing one based on a mathematical formulation of the
shape of convergence, to find a model best suited for estimating the limit. In addition,
applying the method to more complex models could provide a better understanding of
the method and help to improve it.

37

A Appendix
A.1 Derivatives on the lattice
The second order derivative carried out by hand.

∂2

∂β2 ⟨O⟩ = ∂

∂β
(− ⟨EO⟩ + ⟨O⟩ ⟨E⟩) = − ∂

∂β
(⟨EO⟩) + ∂

∂β
(⟨O⟩ ⟨E⟩) (A.1)

= −[− ⟨HHO⟩ + ⟨HO⟩ ⟨H⟩] + (− ⟨HH⟩ + ⟨H⟩ ⟨H⟩) ⟨O⟩ (A.2)
+ (− ⟨HO⟩ + ⟨O⟩ ⟨H⟩) ⟨H⟩ (A.3)

=
〈
H2O

〉
− 2 ⟨HO⟩ ⟨H⟩ + 2 ⟨H⟩2 ⟨O⟩ −

〈
H2

〉
⟨O⟩ (A.4)

A.1.1 Symbolically calculated derivatives

The following are the first six derivatives of the expected value of the energy with
respect to β.

∂0

∂β0 ⟨E⟩ = ⟨E⟩ (A.5)

∂1

∂β1 ⟨E⟩ = ⟨E⟩2 −
〈
E2

〉
(A.6)

∂2

∂β2 ⟨E⟩ = 2 ⟨E⟩3 − 3 ⟨E⟩
〈
E2

〉
+

〈
E3

〉
(A.7)

∂3

∂β3 ⟨E⟩ = 6 ⟨E⟩4 − 12 ⟨E⟩2
〈
E2

〉
+ 4 ⟨E⟩

〈
E3

〉
+ 3

〈
E2

〉2
−

〈
E4

〉
(A.8)

∂4

∂β4 ⟨E⟩ = 24 ⟨E⟩5 − 60 ⟨E⟩3
〈
E2

〉
+ 20 ⟨E⟩2

〈
E3

〉
+ 30 ⟨E⟩

〈
E2

〉2

− 5 ⟨E⟩
〈
E4

〉
− 10

〈
E2

〉 〈
E3

〉
+

〈
E5

〉
(A.9)

∂5

∂β5 ⟨E⟩ = 120 ⟨E⟩6 −360 ⟨E⟩4
〈
E2

〉
+120 ⟨E⟩3

〈
E3

〉
+270 ⟨E⟩2

〈
E2

〉2
−30 ⟨E⟩2

〈
E4

〉
− 120 ⟨E⟩

〈
E2

〉 〈
E3

〉
+ 6 ⟨E⟩

〈
E5

〉
− 30

〈
E2

〉3
+ 15

〈
E2

〉 〈
E4

〉
+ 10

〈
E3

〉2
−

〈
E6

〉
(A.10)

∂6

∂β6 ⟨E⟩ = 720 ⟨E⟩7−2520 ⟨E⟩5
〈
E2

〉
+840 ⟨E⟩4

〈
E3

〉
+2520 ⟨E⟩3

〈
E2

〉2
−210 ⟨E⟩3

〈
E4

〉
−1260 ⟨E⟩2

〈
E2

〉 〈
E3

〉
+42 ⟨E⟩2

〈
E5

〉
−630 ⟨E⟩

〈
E2

〉3
+210 ⟨E⟩

〈
E2

〉 〈
E4

〉
+140 ⟨E⟩

〈
E3

〉2

− 7 ⟨E⟩
〈
E6

〉
+ 210

〈
E2

〉2 〈
E3

〉
− 21

〈
E2

〉 〈
E5

〉
− 35

〈
E3

〉 〈
E4

〉
+

〈
E7

〉
(A.11)

38

Appendix
Optimization

A.2 Optimization

Listing A.1 Final form of the implantation of the Wolff algorithm� �
1 function WolffStep!(currentConfig,beta,queue,marked,neighbors,r,r_idx)
2 fill!(marked, false)
3 Nx,Ny = size(currentConfig)
4 start = CartesianIndex(rand(rng,1:Nx),rand(rng,1:Ny))
5 q_idx=1
6 queue[q_idx]=start
7 currentConfig[start]=-currentConfig[start] #flip
8 marked[start]=true #mark
9 while q_idx != 0
10 current_index=queue[q_idx]
11 q_idx-=1
12 updateNeighbors!(neighbors,current_index,Nx,Ny)
13 for index in neighbors
14 if marked[index] continue end
15 if currentConfig[current_index]==currentConfig[index] continue end
16 P=1-exp(-2beta)
17 r_idx[1]=r_idx[1]+1
18 if r_idx[1]>length(r)
19 rand!(rng,r) #reset random numbers
20 r_idx[1]=1 #reset idx numbers
21 end
22 if r[r_idx[1]]<P
23 currentConfig[index]=-currentConfig[index] #flip
24 marked[index]=true #mark
25 q_idx+=1
26 queue[q_idx]=index
27 end
28 end
29 end
30 return (marked)
31 end� �

Listing A.2 The functions used to calculate the bootstrap samples, generate the resampling
weights and blocking of observables.� �

1 function bootstrap_all(Observable,weights,blocksize)
2 blockedObservable=blocking(Observable,blocksize)
3 all_means=zeros(eltype(blockedObservable),length(weights))
4 for i=1:length(weights)
5 all_means[i]=StatsBase.mean(blockedObservable,weights[i])
6 end ; return all_means
7 end
8 function genRandomWeights(N,l)
9 weights=[FrequencyWeights(ones(Int8,l))] ; sizehint!(weights,N+1)
10 for i=1:N
11 push!(weights,genRandomWeightsVector1D(l))
12 end ; return weights
13 end
14 function blocking(observable::AbstractArray,blocksize::Int)
15 new_length=floor(Int,length(observable)/blocksize)
16 result=zeros(eltype(observable),new_length)
17 for i=1:new_length
18 result[i]=StatsBase.mean(observable[(i-1)*blocksize+1:(i)*blocksize])
19 end ; return result
20 end� �

39

Appendix
Additional comparisons for the derivative of the internal energy at small lattice sizes

A.3 Additional comparisons for the derivative of the
internal energy at small lattice sizes
The following are comparison of the derivatives of the internal energy for the lattice
sizes of L = 2, 4, 6 to the analytic results obtained from the respective partition function
at β = 0.325, 0.35, 0.375, 0.425, 0.435.

0 5 10 15
n

2

1

0

1

(
n e

) i
n

%

L=2 2
red = 0.08

0 5 10 15
n

2

1

0

L=4 2
red = 0.50

0 5 10 15
n

15

10

5

0

5

10

L=6 2
red = 0.15

Figure A.1 β = 0.325

0 5 10 15
n

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(
n e

) i
n

%

L=2 2
red = 1.13

0 5 10 15
n

1.0

0.5

0.0

0.5

1.0

1.5

L=4 2
red = 0.61

0 5 10 15
n

4

2

0

2

4

6

L=6 2
red = 0.74

Figure A.2 β = 0.35

40

Appendix
Additional comparisons for the derivative of the internal energy at small lattice sizes

0 5 10 15
n

3

2

1

0

1

(
n e

) i
n

%

L=2 2
red = 3.55

0 5 10 15
n

0.4

0.2

0.0

0.2

0.4

0.6

L=4 2
red = 0.14

0 5 10 15
n

1

0

1

2

L=6 2
red = 1.10

Figure A.3 β = 0.375

0 5 10 15
n

4

2

0

2

4

6

8

(
n e

) i
n

%

L=2 2
red = 0.17

0 5 10 15
n

1

0

1

2

3

4

5

L=4 2
red = 0.77

0 5 10 15
n

2

0

2

4

6

L=6 2
red = 1.20

Figure A.4 β = 0.425

0 5 10 15
n

2

1

0

(
n e

) i
n

%

L=2 2
red = 0.84

0 5 10 15
n

15

10

5

0

5

L=4 2
red = 1.18

0 5 10 15
n

15

10

5

0

5

L=6 2
red = 13.57

Figure A.5 β = 0.435

41

Appendix
Radii of convergence

A.4 Radii of convergence
This section contains the plots for all the radii of convergence based on the lattice sizes
of L = 3 up to 12, excluding L = 6 which can be seen in Figure 5.16.

10 20 30 40 50
n

0.265

0.270

0.275

0.280

0.285

0.290

0.295

r n

2
red = 179.96

 = 0.3 ; 2
red = 422.91

 = 0.325 ; 2
red = 0.07

 = 0.35 ; 2
red = 511.73

 = 0.375 ; 2
red = 442.45

 = 0.4 ; 2
red = 20.36

 = 0.425 ; 2
red = 26.17

 = 0.435 ; 2
red = 115.16

 = 0.44 ; 2
red = 14.72

(a) L = 3

10 20 30 40 50
n

0.200

0.205

0.210

0.215

0.220

0.225

0.230

0.235

r n

2
red = 256.75

 = 0.3 ; 2
red = 0.03

 = 0.325 ; 2
red = 262.71

 = 0.35 ; 2
red = 672.68

 = 0.375 ; 2
red = 522.50

 = 0.4 ; 2
red = 49.00

 = 0.425 ; 2
red = 30.15

 = 0.435 ; 2
red = 29.81

 = 0.44 ; 2
red = 98.38

(b) L = 4

10 20 30 40 50
n

0.17

0.18

0.19

0.20

0.21

r n

2
red = 190.87

 = 0.3 ; 2
red = 71.78

 = 0.325 ; 2
red = 19.44

 = 0.35 ; 2
red = 511.68

 = 0.375 ; 2
red = 455.12

 = 0.4 ; 2
red = 160.16

 = 0.425 ; 2
red = 69.44

 = 0.435 ; 2
red = 70.34

 = 0.44 ; 2
red = 15.84

(c) L = 5

10 20 30 40 50
n

0.12

0.14

0.16

0.18

0.20

0.22

0.24

r n

2
red = 71.87

 = 0.3 ; 2
red = 31.58

 = 0.325 ; 2
red = 11.86

 = 0.35 ; 2
red = 21.09

 = 0.375 ; 2
red = 43.06

 = 0.4 ; 2
red = 132.98

 = 0.425 ; 2
red = 233.46

 = 0.435 ; 2
red = 34.92

 = 0.44 ; 2
red = 21.96

(d) L = 7

10 20 30 40 50
n

0.10

0.12

0.14

0.16

0.18

0.20

0.22

r n

2
red = 43.15

 = 0.3 ; 2
red = 38.10

 = 0.325 ; 2
red = 15.03

 = 0.35 ; 2
red = 0.85

 = 0.375 ; 2
red = 12.61

 = 0.4 ; 2
red = 83.81

 = 0.425 ; 2
red = 93.59

 = 0.435 ; 2
red = 56.34

 = 0.44 ; 2
red = 28.01

(e) L = 8

10 20 30 40 50
n

0.10

0.12

0.14

0.16

0.18

0.20

r n

2
red = 83.08

 = 0.3 ; 2
red = 0.86

 = 0.325 ; 2
red = 5.39

 = 0.35 ; 2
red = 11.92

 = 0.375 ; 2
red = 41.23

 = 0.4 ; 2
red = 135.70

 = 0.425 ; 2
red = 103.13

 = 0.435 ; 2
red = 337.24

 = 0.44 ; 2
red = 35.43

(f) L = 9

42

Appendix
Radii of convergence

10 20 30 40 50
n

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

r n
2
red = 64.24

 = 0.3 ; 2
red = 0.24

 = 0.325 ; 2
red = 1.93

 = 0.35 ; 2
red = 4.95

 = 0.375 ; 2
red = 25.60

 = 0.4 ; 2
red = 125.15

 = 0.425 ; 2
red = 82.75

 = 0.435 ; 2
red = 192.40

 = 0.44 ; 2
red = 76.07

(g) L = 10

10 20 30 40 50
n

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

r n

2
red = 77.42

 = 0.3 ; 2
red = 0.29

 = 0.325 ; 2
red = 0.64

 = 0.35 ; 2
red = 1.75

 = 0.375 ; 2
red = 1.41

 = 0.4 ; 2
red = 21.63

 = 0.425 ; 2
red = 203.29

 = 0.435 ; 2
red = 216.70

 = 0.44 ; 2
red = 128.72

(h) L = 11

10 20 30 40 50
n

0.075

0.100

0.125

0.150

0.175

0.200

0.225

r n

2
red = 306.96

 = 0.3 ; 2
red = 6.84

 = 0.325 ; 2
red = 25.21

 = 0.35 ; 2
red = 6.21

 = 0.375 ; 2
red = 28.73

 = 0.4 ; 2
red = 47.81

 = 0.425 ; 2
red = 62.25

 = 0.435 ; 2
red = 1023.78

 = 0.44 ; 2
red = 1581.06

(i) L = 12

10 20 30 40 50
n

0.05

0.10

0.15

0.20

0.25

r n

2
red = 323.99

 = 0.3 ; 2
red = 0.06

 = 0.325 ; 2
red = 2.89

 = 0.35 ; 2
red = 60.04

 = 0.375 ; 2
red = 248.66

 = 0.4 ; 2
red = 193.76

 = 0.425 ; 2
red = 767.42

 = 0.435 ; 2
red = 1245.77

 = 0.44 ; 2
red = 451.96

(j) L = 13

Figure A.6 Plots containing the fits of the radii of convergence for L = 2 up to L = 13. The
underling data is based on the internal energy e

A.4.1 Explanation for omitting L = 2

0 10 20 30 40 50
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r n

lattice result

Figure A.7 Series elements from the
root test for a lattice size
of L = 2

In the further analysis of the radii of convergence
& the determination of the Fisher zeros, the case
L = 2 will be left out due to the fact that, as
Figure A.7 shows, no monotone series can be con-
structed. While the series itself seems correct and
fits nicely into the pattern of the limit inferior,
since it is incompatible with the method used to
determine the limit inferior, L = 2 is omitted.
However, in the systematic error section, the data
points are re-included in those fitting models where
there is no problem, i.e. those without the inferior
approximation.

43

Appendix
Determination of the Fisher Zeros

A.5 Determination of the Fisher Zeros
This section contains the plots used to determine the Fisher zeros from L = 3 to L = 13.
The width of the black edges of the circle is equal to twice the statistical error calculated
using the bootstrap method.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
()

0.0

0.1

0.2

0.3

0.4

(
)

Intersection point

(a) L = 3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
()

0.0

0.1

0.2

0.3

0.4

(
)

Intersection point

(b) L = 4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
()

0.0

0.1

0.2

0.3

0.4

(
)

Intersection point

(c) L = 5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
()

0.0

0.1

0.2

0.3

0.4

(
)

Intersection point

(d) L = 6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
()

0.0

0.1

0.2

0.3

0.4

(
)

Intersection point

(e) L = 7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
()

0.0

0.1

0.2

0.3

0.4

(
)

Intersection point

(f) L = 8

44

Appendix
Determination of the Fisher Zeros

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
()

0.0

0.1

0.2

0.3

0.4

(
)

Intersection point

(g) L = 9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
()

0.0

0.1

0.2

0.3

0.4

(
)

Intersection point

(h) L = 10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
()

0.0

0.1

0.2

0.3

0.4

(
)

Intersection point

(i) L = 11

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
()

0.0

0.1

0.2

0.3

0.4

(
)

Intersection point

(j) L = 12

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
()

0.0

0.1

0.2

0.3

0.4

(
)

Intersection point

(k) L = 13

Figure A.8 Plots containing the fits of the interceptions points of the radii of convergence
resulting in the Fisher zeros for L = 3 up to L = 13. The underling data is based
on the internal energy e

45

Appendix
Plots using the magnitude m as the observable

A.6 Plots using the magnitude m as the observable

A.6.1 Plots of the radii of convergence

10 20 30 40 50
n

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

r n

2
red = 0.65

 = 0.3 ; 2
red = 0.39

 = 0.325 ; 2
red = 0.16

 = 0.35 ; 2
red = 0.84

 = 0.375 ; 2
red = 0.30

 = 0.4 ; 2
red = 0.64

 = 0.425 ; 2
red = 0.25

 = 0.435 ; 2
red = 0.89

 = 0.44 ; 2
red = 1.59

(a) L = 2

10 20 30 40 50
n

0.5

1.0

1.5

2.0

2.5

r n

2
red = 0.43

 = 0.3 ; 2
red = 0.50

 = 0.325 ; 2
red = 0.26

 = 0.35 ; 2
red = 0.16

 = 0.375 ; 2
red = 0.40

 = 0.4 ; 2
red = 0.20

 = 0.425 ; 2
red = 0.40

 = 0.435 ; 2
red = 0.60

 = 0.44 ; 2
red = 1.00

(b) L = 3

10 20 30 40 50
n

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

r n

2
red = 0.30

 = 0.3 ; 2
red = 0.18

 = 0.325 ; 2
red = 0.22

 = 0.35 ; 2
red = 0.14

 = 0.375 ; 2
red = 0.61

 = 0.4 ; 2
red = 0.31

 = 0.425 ; 2
red = 0.24

 = 0.435 ; 2
red = 0.28

 = 0.44 ; 2
red = 0.40

(c) L = 4

10 20 30 40 50
n

0.2

0.4

0.6

0.8

1.0

1.2

1.4

r n

2
red = 0.30

 = 0.3 ; 2
red = 0.12

 = 0.325 ; 2
red = 0.31

 = 0.35 ; 2
red = 0.20

 = 0.375 ; 2
red = 0.39

 = 0.4 ; 2
red = 0.24

 = 0.425 ; 2
red = 0.29

 = 0.435 ; 2
red = 0.37

 = 0.44 ; 2
red = 0.45

(d) L = 5

10 20 30 40 50
n

0.2

0.4

0.6

0.8

1.0

r n

2
red = 0.31

 = 0.3 ; 2
red = 0.22

 = 0.325 ; 2
red = 0.13

 = 0.35 ; 2
red = 0.34

 = 0.375 ; 2
red = 0.20

 = 0.4 ; 2
red = 0.90

 = 0.425 ; 2
red = 0.24

 = 0.435 ; 2
red = 0.30

 = 0.44 ; 2
red = 0.18

(e) L = 6

10 20 30 40 50
n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

r n

2
red = 0.34

 = 0.3 ; 2
red = 0.19

 = 0.325 ; 2
red = 0.23

 = 0.35 ; 2
red = 0.24

 = 0.375 ; 2
red = 0.22

 = 0.4 ; 2
red = 0.49

 = 0.425 ; 2
red = 0.17

 = 0.435 ; 2
red = 0.18

 = 0.44 ; 2
red = 0.98

(f) L = 7

46

Appendix
Plots using the magnitude m as the observable

10 20 30 40 50
n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

r n

2
red = 0.28

 = 0.3 ; 2
red = 0.29

 = 0.325 ; 2
red = 0.15

 = 0.35 ; 2
red = 0.07

 = 0.375 ; 2
red = 0.62

 = 0.4 ; 2
red = 0.32

 = 0.425 ; 2
red = 0.19

 = 0.435 ; 2
red = 0.13

 = 0.44 ; 2
red = 0.40

(g) L = 8

10 20 30 40 50
n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r n

2
red = 0.25

 = 0.3 ; 2
red = 0.12

 = 0.325 ; 2
red = 0.16

 = 0.35 ; 2
red = 0.40

 = 0.375 ; 2
red = 0.19

 = 0.4 ; 2
red = 0.36

 = 0.425 ; 2
red = 0.11

 = 0.435 ; 2
red = 0.41

 = 0.44 ; 2
red = 0.24

(h) L = 9

10 20 30 40 50
n

0.1

0.2

0.3

0.4

0.5

r n

2
red = 0.20

 = 0.3 ; 2
red = 0.02

 = 0.325 ; 2
red = 0.13

 = 0.35 ; 2
red = 0.10

 = 0.375 ; 2
red = 0.10

 = 0.4 ; 2
red = 0.24

 = 0.425 ; 2
red = 0.38

 = 0.435 ; 2
red = 0.12

 = 0.44 ; 2
red = 0.41

(i) L = 10

10 20 30 40 50
n

0.1

0.2

0.3

0.4

0.5

r n

2
red = 0.17

 = 0.3 ; 2
red = 0.13

 = 0.325 ; 2
red = 0.07

 = 0.35 ; 2
red = 0.17

 = 0.375 ; 2
red = 0.08

 = 0.4 ; 2
red = 0.28

 = 0.425 ; 2
red = 0.32

 = 0.435 ; 2
red = 0.14

 = 0.44 ; 2
red = 0.12

(j) L = 11

10 20 30 40 50
n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r n

2
red = 0.21

 = 0.3 ; 2
red = 0.05

 = 0.325 ; 2
red = 0.02

 = 0.35 ; 2
red = 0.04

 = 0.375 ; 2
red = 0.51

 = 0.4 ; 2
red = 0.25

 = 0.425 ; 2
red = 0.08

 = 0.435 ; 2
red = 0.35

 = 0.44 ; 2
red = 0.27

(k) L = 12

10 20 30 40 50
n

0.1

0.2

0.3

0.4

0.5

0.6

r n

2
red = 0.18

 = 0.3 ; 2
red = 0.19

 = 0.325 ; 2
red = 0.24

 = 0.35 ; 2
red = 0.06

 = 0.375 ; 2
red = 0.17

 = 0.4 ; 2
red = 0.14

 = 0.425 ; 2
red = 0.08

 = 0.435 ; 2
red = 0.07

 = 0.44 ; 2
red = 0.42

(l) L = 13

Figure A.9 Plots containing the fits of the radii of convergence for L = 2 up to L = 13. The
underling data is based on the internal energy e

47

Appendix
Plots using the magnitude m as the observable

A.6.2 Plots of the Fisher zeros

0.1 0.2 0.3 0.4 0.5 0.6
()

0.05

0.00

0.05

0.10

0.15

0.20

0.25

(
)

Intersection point

(a) L = 3

0.1 0.2 0.3 0.4 0.5 0.6
()

0.05

0.00

0.05

0.10

0.15

0.20

0.25

(
)

Intersection point

(b) L = 4

0.1 0.2 0.3 0.4 0.5 0.6
()

0.05

0.00

0.05

0.10

0.15

0.20

0.25

(
)

Intersection point

(c) L = 5

0.1 0.2 0.3 0.4 0.5 0.6
()

0.05

0.00

0.05

0.10

0.15

0.20

0.25

(
)

Intersection point

(d) L = 6

0.1 0.2 0.3 0.4 0.5 0.6
()

0.05

0.00

0.05

0.10

0.15

0.20

0.25

(
)

Intersection point

(e) L = 7

0.1 0.2 0.3 0.4 0.5 0.6
()

0.05

0.00

0.05

0.10

0.15

0.20

0.25

(
)

Intersection point

(f) L = 8

48

Appendix
Plots using the magnitude m as the observable

0.1 0.2 0.3 0.4 0.5 0.6
()

0.05

0.00

0.05

0.10

0.15

0.20

0.25
(

)
Intersection point

(g) L = 9

0.1 0.2 0.3 0.4 0.5 0.6
()

0.05

0.00

0.05

0.10

0.15

0.20

0.25

(
)

Intersection point

(h) L = 10

0.1 0.2 0.3 0.4 0.5 0.6
()

0.05

0.00

0.05

0.10

0.15

0.20

0.25

(
)

Intersection point

(i) L = 11

0.1 0.2 0.3 0.4 0.5 0.6
()

0.05

0.00

0.05

0.10

0.15

0.20

0.25

(
)

Intersection point

(j) L = 12

0.1 0.2 0.3 0.4 0.5 0.6
()

0.05

0.00

0.05

0.10

0.15

0.20

0.25

(
)

Intersection point

(k) L = 13

Figure A.10 Plots containing the fits of the interceptions points of the radii of convergence
resulting in the Fisher zeros for L = 2 up to L = 13. The underling data is
based on the internal energy m

49

Appendix
Models used for the total error

A.7 Models used for the total error
Below is a list of all the unique functions used to determine the total error, where the
letters a to e represent the possible fit parameters.

f(n) = a + b

n
f(n) = a + b exp(−cn)

f(n) = a + b

n − c

f(n) = a + b

n − c
+ d

(n − c)2

f(n) = a (A.12)

f(n) = a + b
log(|d(n − c)|)

d(n − c)

f(n) = a + b

n − c
+ d

(n − e)2 + e

(n − c)3

f(n) = a + b

(n − c)2

f(n) = a + b

(n − c)3

f(n) = a + b

log(|c(n − d)|))

50

Bibliography
[1] Bazavov, A. et al., “The QCD Equation of State to O(µ6

B) from Lattice QCD,”
Phys. Rev. D, vol. 95, no. 5, p. 054 504, 2017.

[2] Bhattacharjee, S. M. and Khare, A., “Fifty years of the exact solution of the
two-dimensional Ising model by Onsager,” Curr. Sci., vol. 69, pp. 816–820, 1995,
[Erratum: Curr.Sci. 71, 493 (1996)].

[3] Borsanyi, S. et al., “Leading hadronic contribution to the muon magnetic moment
from lattice QCD,” Nature, vol. 593, no. 7857, pp. 51–55, 2021.

[4] Königsberger, K., Analysis 1 (Springer-Lehrbuch), German, isbn: 978-3-540-
40371-5.

[5] Malsagov, M. Y.; Karandashev, I. M., and Kryzhanovsky, B. V., The analytical
expressions for a finite-size 2d ising model, 2017.

[6] Onsager, L., “Crystal statistics. 1. A Two-dimensional model with an order
disorder transition,” Phys. Rev., vol. 65, pp. 117–149, 1944.

[7] Feynman, R. P. (P., Statistical mechanics: a set of lectures by R. P. Feynman
(Frontiers in physics). 1972, Notes taken by R. Kikuchi and H. A. Feiveson. Edited
by Jacob Shaham, isbn: 0-8053-2508-5, 0-8053-2509-3 (paperback).

[8] Krauth, W., “Statistical mechanics: algorithms and computations,” Jan. 2006.

[9] Ferdinand, A. E. and Fisher, M. E., “Bounded and Inhomogeneous Ising Models.
1. Specific-Heat Anomaly of a Finite Lattice,” Phys. Rev., vol. 185, pp. 832–846,
1969.

[10] Deger, A. and Flindt, C., “Determination of universal critical exponents using
Lee-Yang theory,” Phys. Rev. Research., vol. 1, p. 023 004, 2019.

[11] Gattringer, C. and Lang, C. B., Quantum chromodynamics on the lattice. Berlin:
Springer, 2010, vol. 788, isbn: 978-3-642-01849-7, 978-3-642-01850-3.

[12] Wolff, U., “Collective Monte Carlo Updating for Spin Systems,” Phys. Rev. Lett.,
vol. 62, p. 361, 1989.

[13] Varnhorst, L., Selected topics of lattice gauge theory, Lecture notes, 2020.

[14] Efron, B., “Bootstrap Methods: Another Look at the Jackknife,” Annals Statist.,
vol. 7, no. 1, pp. 1–26, 1979.

[15] Fodor, Z.; Giordano, M.; Günther, J. N., et al., “Trying to constrain the location of
the QCD critical endpoint with lattice simulations,” Nucl. Phys. A, vol. 982, Anti-
nori, F.; Dainese, A.; Giubellino, P.; Greco, V.; Lombardo, M. P., and Scomparin,
E., Eds., pp. 843–846, 2019.

[16] Haerter, J. O., Statistical mechanics, the ising model and critical phenomena,
Lecture notes, 2017.

51

Name, Vorname:

Erklärung
gem. §15 Abs. 6 der Prüfungsordnung vom 25.11.2019

Hiermit erkläre ich, dass ich die Bachelor-Thesis selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht
habe.

.. ..
Datum Unterschrift

Erklärung
Hiermit erkläre ich mich damit einverstanden, dass meine Abschlussarbeit (Bachelor-
Thesis) wissenschaftlich interessierten Personen oder Institutionen und im Rahmen
von externen Qualitätssicherungsmaßnahmen des Studienganges zur Einsichtnahme zur
Verfügung gestellt werden kann.
Korrektur- oder Bewertungshinweise in meiner Arbeit dürfen nicht zitiert werden.

.. ..
Datum Unterschrift

	Contents
	Acknowledgments
	Introduction
	Mathematical Foundation
	Statistical Mechanics
	Canonical Ensemble
	 Recursive differentiation

	The two-dimensional Ising model
	 Phase transition and Fisher zeros

	Numerical algorithms
	Wolff algorithm
	 Optimization
	 Sweep problem

	Bootstrap
	Recursive differentiation algorithm

	Results
	Verification of the simulation
	 Verification for small lattice sizes
	 Verification for big lattice sizes

	Derivative
	 Derivative on large lattices
	 Derivative on small lattices

	Radius of convergence
	 Comparison of the root and ratio test
	 Determining the limit

	Determining the Fisher Zeros
	 Comparison to Deger & Flindt

	Determining the critical exponent and inverse temperature c
	 Determination of & c using the magnetization

	Determination of the total error

	Conclusion and outlook
	Appendix
	Derivatives on the lattice
	 Symbolically calculated derivatives

	Optimization
	Additional comparisons for the derivative of the internal energy at small lattice sizes
	Radii of convergence
	 Explanation for omitting L=2

	Determination of the Fisher Zeros
	Plots using the magnitude m as the observable
	 Plots of the radii of convergence
	 Plots of the Fisher zeros

	Models used for the total error

	Bibliography

